MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrev Structured version   Visualization version   GIF version

Theorem fzrev 12960
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))

Proof of Theorem fzrev
StepHypRef Expression
1 ancom 461 . . 3 (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁))
2 zre 11974 . . . . . . . 8 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
3 zre 11974 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
4 zre 11974 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 suble 11107 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
62, 3, 4, 5syl3an 1152 . . . . . . 7 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
763comr 1117 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
873expb 1112 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
98adantll 710 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
10 zre 11974 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
11 lesub 11108 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
1210, 2, 3, 11syl3an 1152 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
13123expb 1112 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
1413adantlr 711 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
159, 14anbi12d 630 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
161, 15syl5rbbr 287 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
17 simprr 769 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ)
18 zsubcl 12013 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
1918ancoms 459 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
2019ad2ant2lr 744 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑁) ∈ ℤ)
21 zsubcl 12013 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2221ancoms 459 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2322ad2ant2r 743 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑀) ∈ ℤ)
24 elfz 12888 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝑁) ∈ ℤ ∧ (𝐽𝑀) ∈ ℤ) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
2517, 20, 23, 24syl3anc 1363 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
26 zsubcl 12013 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
2726adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝐾) ∈ ℤ)
28 simpll 763 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℤ)
29 simplr 765 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑁 ∈ ℤ)
30 elfz 12888 . . 3 (((𝐽𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3127, 28, 29, 30syl3anc 1363 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3216, 25, 313bitr4d 312 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105   class class class wbr 5058  (class class class)co 7145  cr 10525  cle 10665  cmin 10859  cz 11970  ...cfz 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-fz 12883
This theorem is referenced by:  fzrev2  12961  fzrev3  12963  fzrevral  12982  fsumrev  15124  fprodrev  15321  ballotlemsima  31673
  Copyright terms: Public domain W3C validator