Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzspl Structured version   Visualization version   GIF version

Theorem fzspl 30515
Description: Split the last element of a finite set of sequential integers. (more generic than fzsuc 12957) (Contributed by Thierry Arnoux, 7-Nov-2016.)
Assertion
Ref Expression
fzspl (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))

Proof of Theorem fzspl
StepHypRef Expression
1 eluzelz 12256 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
21zcnd 12091 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
3 1zzd 12016 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℤ)
43zcnd 12091 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℂ)
52, 4npcand 11003 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) = 𝑁)
65eleq1d 2899 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
76ibir 270 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ𝑀))
8 eluzelre 12257 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
98lem1d 11575 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ≤ 𝑁)
101, 3zsubcld 12095 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
11 eluz1 12250 . . . . 5 ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
1210, 11syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
131, 9, 12mpbir2and 711 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
14 fzsplit2 12935 . . 3 ((((𝑁 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
157, 13, 14syl2anc 586 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
165oveq1d 7173 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
17 fzsn 12952 . . . . 5 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
181, 17syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁...𝑁) = {𝑁})
1916, 18eqtrd 2858 . . 3 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
2019uneq2d 4141 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2115, 20eqtrd 2858 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cun 3936  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542  cle 10678  cmin 10872  cz 11984  cuz 12246  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by:  fzdif2  30516  ballotlemfp1  31751
  Copyright terms: Public domain W3C validator