MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsplit Structured version   Visualization version   GIF version

Theorem fzsplit 12405
Description: Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))

Proof of Theorem fzsplit
StepHypRef Expression
1 elfzuz 12376 . . 3 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 peano2uz 11779 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
31, 2syl 17 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (ℤ𝑀))
4 elfzuz3 12377 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
5 fzsplit2 12404 . 2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
63, 4, 5syl2anc 694 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  cun 3605  cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977  cuz 11725  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  fzsuc  12426  fz0to3un2pr  12480  fz0sn0fz1  12495  fsum1p  14526  o1fsum  14589  climcndslem1  14625  climcndslem2  14626  mertenslem1  14660  fprod1p  14742  fprodeq0  14749  4sqlem19  15714  uniioombllem3  23399  iblcnlem1  23599  mtest  24203  birthdaylem2  24724  ftalem5  24848  chtdif  24929  ppidif  24934  gausslemma2dlem4  25139  lgsquadlem2  25151  pntpbnd2  25321  axlowdimlem3  25869  axlowdimlem16  25882  axlowdimlem17  25883  esumpmono  30269  fsum2dsub  30813  subfacp1lem1  31287  subfacp1lem5  31292  poimirlem1  33540  poimirlem2  33541  poimirlem6  33545  poimirlem7  33546  poimirlem8  33547  poimirlem11  33550  fzsplit1nn0  37634  stoweidlem11  40546  stoweidlem26  40561  31prm  41837
  Copyright terms: Public domain W3C validator