Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit3 Structured version   Visualization version   GIF version

Theorem fzsplit3 29862
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
Assertion
Ref Expression
fzsplit3 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplit3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12535 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 11674 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 elfzelz 12535 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
43zred 11674 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ)
5 1red 10247 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℝ)
64, 5resubcld 10650 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℝ)
7 lelttric 10336 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
82, 6, 7syl2anr 496 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
9 elfzuz 12531 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
10 1zzd 11600 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℤ)
113, 10zsubcld 11679 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
12 elfz5 12527 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
139, 11, 12syl2anr 496 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
14 elfzuz3 12532 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 473 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 12529 . . . . . . . . 9 (𝑥 ∈ (𝐾...𝑁) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 985 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
1815, 17syl 17 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
19 eluz 11893 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
203, 1, 19syl2an 495 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
21 zlem1lt 11621 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
223, 1, 21syl2an 495 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
2318, 20, 223bitrd 294 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝐾 − 1) < 𝑥))
2413, 23orbi12d 748 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)) ↔ (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥)))
258, 24mpbird 247 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
26 elfzuz 12531 . . . . . . 7 (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (ℤ𝑀))
2726adantl 473 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (ℤ𝑀))
28 elfzuz3 12532 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2928adantr 472 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝐾))
30 elfzuz3 12532 . . . . . . . . . 10 (𝑥 ∈ (𝑀...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝑥))
3130adantl 473 . . . . . . . . 9 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝑥))
32 peano2uz 11934 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ𝑥) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
3331, 32syl 17 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
344recnd 10260 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
355recnd 10260 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℂ)
3634, 35npcand 10588 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
3736eleq1d 2824 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3837adantr 472 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3933, 38mpbid 222 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ (ℤ𝑥))
40 uztrn 11896 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
4129, 39, 40syl2anc 696 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝑥))
42 elfzuzb 12529 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
4327, 41, 42sylanbrc 701 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
44 elfzuz 12531 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
45 elfzuz 12531 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 11896 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
4744, 45, 46syl2anr 496 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (ℤ𝑀))
48 elfzuz3 12532 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑥))
4948adantl 473 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑥))
5047, 49, 42sylanbrc 701 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
5143, 50jaodan 861 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
5225, 51impbida 913 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))))
53 elun 3896 . . 3 (𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
5452, 53syl6bbr 278 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))))
5554eqrdv 2758 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  cun 3713   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458  cz 11569  cuz 11879  ...cfz 12519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520
This theorem is referenced by:  ballotlemfrceq  30899
  Copyright terms: Public domain W3C validator