Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit3 Structured version   Visualization version   GIF version

Theorem fzsplit3 29391
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
Assertion
Ref Expression
fzsplit3 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplit3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12284 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 11426 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 elfzelz 12284 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
43zred 11426 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ)
5 1red 9999 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℝ)
64, 5resubcld 10402 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℝ)
7 lelttric 10088 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
82, 6, 7syl2anr 495 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
9 elfzuz 12280 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
10 1zzd 11352 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℤ)
113, 10zsubcld 11431 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
12 elfz5 12276 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
139, 11, 12syl2anr 495 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
14 elfzuz3 12281 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 482 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 12278 . . . . . . . . 9 (𝑥 ∈ (𝐾...𝑁) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 946 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
1815, 17syl 17 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
19 eluz 11645 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
203, 1, 19syl2an 494 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
21 zlem1lt 11373 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
223, 1, 21syl2an 494 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
2318, 20, 223bitrd 294 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝐾 − 1) < 𝑥))
2413, 23orbi12d 745 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)) ↔ (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥)))
258, 24mpbird 247 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
26 elfzuz 12280 . . . . . . 7 (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (ℤ𝑀))
2726adantl 482 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (ℤ𝑀))
28 elfzuz3 12281 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2928adantr 481 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝐾))
30 elfzuz3 12281 . . . . . . . . . 10 (𝑥 ∈ (𝑀...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝑥))
3130adantl 482 . . . . . . . . 9 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝑥))
32 peano2uz 11685 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ𝑥) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
3331, 32syl 17 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
344recnd 10012 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
355recnd 10012 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℂ)
3634, 35npcand 10340 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
3736eleq1d 2683 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3837adantr 481 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3933, 38mpbid 222 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ (ℤ𝑥))
40 uztrn 11648 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
4129, 39, 40syl2anc 692 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝑥))
42 elfzuzb 12278 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
4327, 41, 42sylanbrc 697 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
44 elfzuz 12280 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
45 elfzuz 12280 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 11648 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
4744, 45, 46syl2anr 495 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (ℤ𝑀))
48 elfzuz3 12281 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑥))
4948adantl 482 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑥))
5047, 49, 42sylanbrc 697 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
5143, 50jaodan 825 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
5225, 51impbida 876 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))))
53 elun 3731 . . 3 (𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
5452, 53syl6bbr 278 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))))
5554eqrdv 2619 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  cun 3553   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cz 11321  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  ballotlemfrceq  30368
  Copyright terms: Public domain W3C validator