MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fztpval Structured version   Visualization version   GIF version

Theorem fztpval 12227
Description: Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fztpval
StepHypRef Expression
1 1z 11240 . . . . 5 1 ∈ ℤ
2 fztp 12222 . . . . 5 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
31, 2ax-mp 5 . . . 4 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
4 df-3 10927 . . . . . 6 3 = (2 + 1)
5 2cn 10938 . . . . . . 7 2 ∈ ℂ
6 ax-1cn 9850 . . . . . . 7 1 ∈ ℂ
75, 6addcomi 10078 . . . . . 6 (2 + 1) = (1 + 2)
84, 7eqtri 2631 . . . . 5 3 = (1 + 2)
98oveq2i 6538 . . . 4 (1...3) = (1...(1 + 2))
10 tpeq3 4222 . . . . . 6 (3 = (1 + 2) → {1, 2, 3} = {1, 2, (1 + 2)})
118, 10ax-mp 5 . . . . 5 {1, 2, 3} = {1, 2, (1 + 2)}
12 df-2 10926 . . . . . 6 2 = (1 + 1)
13 tpeq2 4221 . . . . . 6 (2 = (1 + 1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)})
1412, 13ax-mp 5 . . . . 5 {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}
1511, 14eqtri 2631 . . . 4 {1, 2, 3} = {1, (1 + 1), (1 + 2)}
163, 9, 153eqtr4i 2641 . . 3 (1...3) = {1, 2, 3}
1716raleqi 3118 . 2 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)))
18 1ex 9891 . . 3 1 ∈ V
19 2ex 10939 . . 3 2 ∈ V
20 3ex 10943 . . 3 3 ∈ V
21 fveq2 6088 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
22 iftrue 4041 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴)
2321, 22eqeq12d 2624 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴))
24 fveq2 6088 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
25 1re 9895 . . . . . . . 8 1 ∈ ℝ
26 1lt2 11041 . . . . . . . 8 1 < 2
2725, 26gtneii 10000 . . . . . . 7 2 ≠ 1
28 neeq1 2843 . . . . . . 7 (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1))
2927, 28mpbiri 246 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
30 ifnefalse 4047 . . . . . 6 (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
3129, 30syl 17 . . . . 5 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
32 iftrue 4041 . . . . 5 (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵)
3331, 32eqtrd 2643 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵)
3424, 33eqeq12d 2624 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵))
35 fveq2 6088 . . . 4 (𝑥 = 3 → (𝐹𝑥) = (𝐹‘3))
36 1lt3 11043 . . . . . . . 8 1 < 3
3725, 36gtneii 10000 . . . . . . 7 3 ≠ 1
38 neeq1 2843 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1))
3937, 38mpbiri 246 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 1)
4039, 30syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
41 2re 10937 . . . . . . . 8 2 ∈ ℝ
42 2lt3 11042 . . . . . . . 8 2 < 3
4341, 42gtneii 10000 . . . . . . 7 3 ≠ 2
44 neeq1 2843 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2))
4543, 44mpbiri 246 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 2)
46 ifnefalse 4047 . . . . . 6 (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4745, 46syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4840, 47eqtrd 2643 . . . 4 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶)
4935, 48eqeq12d 2624 . . 3 (𝑥 = 3 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶))
5018, 19, 20, 23, 34, 49raltp 4186 . 2 (∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
5117, 50bitri 262 1 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 194  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  ifcif 4035  {ctp 4128  cfv 5790  (class class class)co 6527  1c1 9793   + caddc 9795  2c2 10917  3c3 10918  cz 11210  ...cfz 12152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator