![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzval2 | Structured version Visualization version GIF version |
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzval 12519 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
2 | zssre 11574 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
3 | ressxr 10273 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3751 | . . . . . 6 ⊢ ℤ ⊆ ℝ* |
5 | 4 | sseli 3738 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
6 | 4 | sseli 3738 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*) |
7 | iccval 12405 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
8 | 5, 6, 7 | syl2an 495 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
9 | 8 | ineq1d 3954 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ)) |
10 | inrab2 4041 | . . . 4 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} | |
11 | sseqin2 3958 | . . . . . 6 ⊢ (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ) | |
12 | 4, 11 | mpbi 220 | . . . . 5 ⊢ (ℝ* ∩ ℤ) = ℤ |
13 | rabeq 3330 | . . . . 5 ⊢ ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
15 | 10, 14 | eqtri 2780 | . . 3 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
16 | 9, 15 | syl6req 2809 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = ((𝑀[,]𝑁) ∩ ℤ)) |
17 | 1, 16 | eqtrd 2792 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 {crab 3052 ∩ cin 3712 ⊆ wss 3713 class class class wbr 4802 (class class class)co 6811 ℝcr 10125 ℝ*cxr 10263 ≤ cle 10265 ℤcz 11567 [,]cicc 12369 ...cfz 12517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-iota 6010 df-fun 6049 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-xr 10268 df-neg 10459 df-z 11568 df-icc 12373 df-fz 12518 |
This theorem is referenced by: dvfsumle 23981 dvfsumabs 23983 taylplem1 24314 taylplem2 24315 taylpfval 24316 dvtaylp 24321 ppisval 25027 |
Copyright terms: Public domain | W3C validator |