MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ga0 Structured version   Visualization version   GIF version

Theorem ga0 18422
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Assertion
Ref Expression
ga0 (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅))

Proof of Theorem ga0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5204 . . 3 ∅ ∈ V
21jctr 527 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V))
3 f0 6555 . . . 4 ∅:∅⟶∅
4 xp0 6010 . . . . 5 ((Base‘𝐺) × ∅) = ∅
54feq2i 6501 . . . 4 (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅)
63, 5mpbir 233 . . 3 ∅:((Base‘𝐺) × ∅)⟶∅
7 ral0 4456 . . 3 𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥)))
86, 7pm3.2i 473 . 2 (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥))))
9 eqid 2821 . . 3 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2821 . . 3 (+g𝐺) = (+g𝐺)
11 eqid 2821 . . 3 (0g𝐺) = (0g𝐺)
129, 10, 11isga 18415 . 2 (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥))))))
132, 8, 12sylanblrc 592 1 (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  c0 4291   × cxp 5548  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Grpcgrp 18097   GrpAct cga 18413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-ga 18414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator