Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Structured version   Visualization version   GIF version

Theorem galactghm 17869
 Description: The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x 𝑋 = (Base‘𝐺)
galactghm.h 𝐻 = (SymGrp‘𝑌)
galactghm.f 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
Assertion
Ref Expression
galactghm ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝐻   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑦)

Proof of Theorem galactghm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2651 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2651 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2651 . 2 (+g𝐻) = (+g𝐻)
5 gagrp 17771 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
6 gaset 17772 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
7 galactghm.h . . . 4 𝐻 = (SymGrp‘𝑌)
87symggrp 17866 . . 3 (𝑌 ∈ V → 𝐻 ∈ Grp)
96, 8syl 17 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐻 ∈ Grp)
10 eqid 2651 . . . . 5 (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑥 𝑦))
111, 10gapm 17785 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌)
126adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → 𝑌 ∈ V)
137, 2elsymgbas 17848 . . . . 5 (𝑌 ∈ V → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1412, 13syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1511, 14mpbird 247 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻))
16 galactghm.f . . 3 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
1715, 16fmptd 6425 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹:𝑋⟶(Base‘𝐻))
18 df-3an 1056 . . . . . 6 ((𝑧𝑋𝑤𝑋𝑦𝑌) ↔ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌))
191, 3gaass 17776 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2018, 19sylan2br 492 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2120anassrs 681 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2221mpteq2dva 4777 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
235adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐺 ∈ Grp)
24 simprl 809 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
25 simprr 811 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
261, 3grpcl 17477 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
2723, 24, 25, 26syl3anc 1366 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
286adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑌 ∈ V)
29 mptexg 6525 . . . . 5 (𝑌 ∈ V → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
3028, 29syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
31 oveq1 6697 . . . . . 6 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑥 𝑦) = ((𝑧(+g𝐺)𝑤) 𝑦))
3231mpteq2dv 4778 . . . . 5 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3332, 16fvmptg 6319 . . . 4 (((𝑧(+g𝐺)𝑤) ∈ 𝑋 ∧ (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3427, 30, 33syl2anc 694 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3517adantr 480 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
3635, 24ffvelrnd 6400 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (Base‘𝐻))
3735, 25ffvelrnd 6400 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (Base‘𝐻))
387, 2, 4symgov 17856 . . . . 5 (((𝐹𝑧) ∈ (Base‘𝐻) ∧ (𝐹𝑤) ∈ (Base‘𝐻)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
3936, 37, 38syl2anc 694 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
401gaf 17774 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4140ad2antrr 762 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4225adantr 480 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑤𝑋)
43 simpr 476 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑦𝑌)
4441, 42, 43fovrnd 6848 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → (𝑤 𝑦) ∈ 𝑌)
45 mptexg 6525 . . . . . . 7 (𝑌 ∈ V → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
4628, 45syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
47 oveq1 6697 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 𝑦) = (𝑤 𝑦))
4847mpteq2dv 4778 . . . . . . 7 (𝑥 = 𝑤 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑤 𝑦)))
4948, 16fvmptg 6319 . . . . . 6 ((𝑤𝑋 ∧ (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
5025, 46, 49syl2anc 694 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
51 mptexg 6525 . . . . . . . 8 (𝑌 ∈ V → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
5228, 51syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
53 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 𝑦) = (𝑧 𝑦))
5453mpteq2dv 4778 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑧 𝑦)))
5554, 16fvmptg 6319 . . . . . . 7 ((𝑧𝑋 ∧ (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
5624, 52, 55syl2anc 694 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
57 oveq2 6698 . . . . . . 7 (𝑦 = 𝑥 → (𝑧 𝑦) = (𝑧 𝑥))
5857cbvmptv 4783 . . . . . 6 (𝑦𝑌 ↦ (𝑧 𝑦)) = (𝑥𝑌 ↦ (𝑧 𝑥))
5956, 58syl6eq 2701 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑥𝑌 ↦ (𝑧 𝑥)))
60 oveq2 6698 . . . . 5 (𝑥 = (𝑤 𝑦) → (𝑧 𝑥) = (𝑧 (𝑤 𝑦)))
6144, 50, 59, 60fmptco 6436 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ∘ (𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
6239, 61eqtrd 2685 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
6322, 34, 623eqtr4d 2695 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = ((𝐹𝑧)(+g𝐻)(𝐹𝑤)))
641, 2, 3, 4, 5, 9, 17, 63isghmd 17716 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ↦ cmpt 4762   × cxp 5141   ∘ ccom 5147  ⟶wf 5922  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Grpcgrp 17469   GrpHom cghm 17704   GrpAct cga 17768  SymGrpcsymg 17843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-tset 16007  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-ghm 17705  df-ga 17769  df-symg 17844 This theorem is referenced by:  cayleylem1  17878
 Copyright terms: Public domain W3C validator