MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg2lem Structured version   Visualization version   GIF version

Theorem gamcvg2lem 24698
Description: Lemma for gamcvg2 24699. (Contributed by Mario Carneiro, 10-Jul-2017.)
Hypotheses
Ref Expression
gamcvg2.f 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
gamcvg2.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
gamcvg2.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
gamcvg2lem (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hints:   𝐹(𝑚)   𝐺(𝑚)

Proof of Theorem gamcvg2lem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 9969 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ)
21adantl 482 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ)
3 simpll 789 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
4 elfznn 12319 . . . . . 6 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
54adantl 482 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6 oveq1 6617 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
86, 7oveq12d 6628 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
98fveq2d 6157 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
109oveq2d 6626 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛))))
11 oveq2 6618 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛))
1211oveq1d 6625 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1))
1312fveq2d 6157 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1)))
1410, 13oveq12d 6628 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
15 gamcvg2.g . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
16 ovex 6638 . . . . . . . 8 ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V
1714, 15, 16fvmpt 6244 . . . . . . 7 (𝑛 ∈ ℕ → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
1817adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
19 gamcvg2.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2019adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2120eldifad 3571 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2322peano2nnd 10988 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2423nnrpd 11821 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2522nnrpd 11821 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2624, 25rpdivcld 11840 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2726relogcld 24286 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
2827recnd 10019 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
2921, 28mulcld 10011 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3022nncnd 10987 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3122nnne0d 11016 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3221, 30, 31divcld 10752 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ)
33 1cnd 10007 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
3432, 33addcld 10010 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ)
3520, 22dmgmdivn0 24667 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0)
3634, 35logcld 24234 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ)
3729, 36subcld 10343 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ)
3818, 37eqeltrd 2698 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
393, 5, 38syl2anc 692 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺𝑛) ∈ ℂ)
40 simpr 477 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 nnuz 11674 . . . . 5 ℕ = (ℤ‘1)
4240, 41syl6eleq 2708 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
43 efadd 14756 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
4443adantl 482 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
45 efsub 14762 . . . . . . . 8 (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4629, 36, 45syl2anc 692 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4730, 33addcld 10010 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
4847, 30, 31divcld 10752 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ)
4923nnne0d 11016 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
5047, 30, 49, 31divne0d 10768 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0)
5148, 50, 21cxpefd 24371 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))))
5251eqcomd 2627 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
53 eflog 24240 . . . . . . . . 9 ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5434, 35, 53syl2anc 692 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5552, 54oveq12d 6628 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5646, 55eqtrd 2655 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5718fveq2d 6157 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))))
588oveq1d 6625 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
5958, 12oveq12d 6628 . . . . . . . 8 (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
60 gamcvg2.f . . . . . . . 8 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
61 ovex 6638 . . . . . . . 8 ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V
6259, 60, 61fvmpt 6244 . . . . . . 7 (𝑛 ∈ ℕ → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6362adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6456, 57, 633eqtr4d 2665 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
653, 5, 64syl2anc 692 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
662, 39, 42, 44, 65seqhomo 12795 . . 3 ((𝜑𝑘 ∈ ℕ) → (exp‘(seq1( + , 𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘))
6766mpteq2dva 4709 . 2 (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
68 eff 14744 . . . 4 exp:ℂ⟶ℂ
6968a1i 11 . . 3 (𝜑 → exp:ℂ⟶ℂ)
70 1z 11358 . . . . 5 1 ∈ ℤ
7170a1i 11 . . . 4 (𝜑 → 1 ∈ ℤ)
7241, 71, 38serf 12776 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
73 fcompt 6360 . . 3 ((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
7469, 72, 73syl2anc 692 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
75 seqfn 12760 . . . . 5 (1 ∈ ℤ → seq1( · , 𝐹) Fn (ℤ‘1))
7670, 75mp1i 13 . . . 4 (𝜑 → seq1( · , 𝐹) Fn (ℤ‘1))
7741fneq2i 5949 . . . 4 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) Fn (ℤ‘1))
7876, 77sylibr 224 . . 3 (𝜑 → seq1( · , 𝐹) Fn ℕ)
79 dffn5 6203 . . 3 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8078, 79sylib 208 . 2 (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8167, 74, 803eqtr4d 2665 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3556  cmpt 4678  ccom 5083   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892  cmin 10217   / cdiv 10635  cn 10971  cz 11328  cuz 11638  ...cfz 12275  seqcseq 12748  expce 14724  logclog 24218  𝑐ccxp 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220  df-cxp 24221
This theorem is referenced by:  gamcvg2  24699
  Copyright terms: Public domain W3C validator