![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gaorb | Structured version Visualization version GIF version |
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
gaorb.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gaorb | ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6741 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴)) | |
2 | eqeq12 2705 | . . . . . 6 ⊢ (((𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) | |
3 | 1, 2 | sylan 489 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) |
4 | 3 | rexbidv 3122 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵)) |
5 | oveq1 6740 | . . . . . 6 ⊢ (𝑔 = ℎ → (𝑔 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
6 | 5 | eqeq1d 2694 | . . . . 5 ⊢ (𝑔 = ℎ → ((𝑔 ⊕ 𝐴) = 𝐵 ↔ (ℎ ⊕ 𝐴) = 𝐵)) |
7 | 6 | cbvrexv 3243 | . . . 4 ⊢ (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) |
8 | 4, 7 | syl6bb 276 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
9 | gaorb.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} | |
10 | vex 3275 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
11 | vex 3275 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
12 | 10, 11 | prss 4427 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌) |
13 | 12 | anbi1i 733 | . . . . 5 ⊢ (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)) |
14 | 13 | opabbii 4793 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
15 | 9, 14 | eqtr4i 2717 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
16 | 8, 15 | brab2a 5271 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
17 | df-3an 1074 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | |
18 | 16, 17 | bitr4i 267 | 1 ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1564 ∈ wcel 2071 ∃wrex 2983 ⊆ wss 3648 {cpr 4255 class class class wbr 4728 {copab 4788 (class class class)co 6733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-sep 4857 ax-nul 4865 ax-pr 4979 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ral 2987 df-rex 2988 df-rab 2991 df-v 3274 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-nul 3992 df-if 4163 df-sn 4254 df-pr 4256 df-op 4260 df-uni 4513 df-br 4729 df-opab 4789 df-xp 5192 df-iota 5932 df-fv 5977 df-ov 6736 |
This theorem is referenced by: gaorber 17830 orbsta 17835 sylow2alem1 18121 sylow2alem2 18122 sylow3lem3 18133 |
Copyright terms: Public domain | W3C validator |