MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorb Structured version   Visualization version   GIF version

Theorem gaorb 18436
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypothesis
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
gaorb (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Distinct variable groups:   𝑔,,𝑥,𝑦,𝐴   𝐵,𝑔,,𝑥,𝑦   ,   ,𝑔,,𝑥,𝑦   𝑔,𝑋,,𝑥,𝑦   ,𝑌,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorb
StepHypRef Expression
1 oveq2 7163 . . . . . 6 (𝑥 = 𝐴 → (𝑔 𝑥) = (𝑔 𝐴))
2 eqeq12 2835 . . . . . 6 (((𝑔 𝑥) = (𝑔 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
31, 2sylan 582 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
43rexbidv 3297 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑔𝑋 (𝑔 𝐴) = 𝐵))
5 oveq1 7162 . . . . . 6 (𝑔 = → (𝑔 𝐴) = ( 𝐴))
65eqeq1d 2823 . . . . 5 (𝑔 = → ((𝑔 𝐴) = 𝐵 ↔ ( 𝐴) = 𝐵))
76cbvrexvw 3450 . . . 4 (∃𝑔𝑋 (𝑔 𝐴) = 𝐵 ↔ ∃𝑋 ( 𝐴) = 𝐵)
84, 7syl6bb 289 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑋 ( 𝐴) = 𝐵))
9 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
10 vex 3497 . . . . . . 7 𝑥 ∈ V
11 vex 3497 . . . . . . 7 𝑦 ∈ V
1210, 11prss 4752 . . . . . 6 ((𝑥𝑌𝑦𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌)
1312anbi1i 625 . . . . 5 (((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦))
1413opabbii 5132 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
159, 14eqtr4i 2847 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
168, 15brab2a 5643 . 2 (𝐴 𝐵 ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
17 df-3an 1085 . 2 ((𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵) ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
1816, 17bitr4i 280 1 (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  wss 3935  {cpr 4568   class class class wbr 5065  {copab 5127  (class class class)co 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-xp 5560  df-iota 6313  df-fv 6362  df-ov 7158
This theorem is referenced by:  gaorber  18437  orbsta  18442  sylow2alem1  18741  sylow2alem2  18742  sylow3lem3  18753  lsmsnorb  30945
  Copyright terms: Public domain W3C validator