MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorber Structured version   Visualization version   GIF version

Theorem gaorber 18376
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
gaorber.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaorber ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Distinct variable groups:   𝑥,𝑔,𝑦,   𝑔,𝑋,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorber
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
21relopabi 5687 . . 3 Rel
32a1i 11 . 2 ( ∈ (𝐺 GrpAct 𝑌) → Rel )
4 simpr 485 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢 𝑣)
51gaorb 18375 . . . . 5 (𝑢 𝑣 ↔ (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
64, 5sylib 219 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
76simp2d 1135 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣𝑌)
86simp1d 1134 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢𝑌)
96simp3d 1136 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑋 ( 𝑢) = 𝑣)
10 simpll 763 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ∈ (𝐺 GrpAct 𝑌))
11 simpr 485 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑋)
128adantr 481 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑢𝑌)
137adantr 481 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑣𝑌)
14 gaorber.2 . . . . . . . 8 𝑋 = (Base‘𝐺)
15 eqid 2818 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1614, 15gacan 18373 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑋𝑢𝑌𝑣𝑌)) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
1710, 11, 12, 13, 16syl13anc 1364 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
18 gagrp 18360 . . . . . . . . 9 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
1918adantr 481 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝐺 ∈ Grp)
2014, 15grpinvcl 18089 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
2119, 20sylan 580 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
22 oveq1 7152 . . . . . . . . . 10 (𝑘 = ((invg𝐺)‘) → (𝑘 𝑣) = (((invg𝐺)‘) 𝑣))
2322eqeq1d 2820 . . . . . . . . 9 (𝑘 = ((invg𝐺)‘) → ((𝑘 𝑣) = 𝑢 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
2423rspcev 3620 . . . . . . . 8 ((((invg𝐺)‘) ∈ 𝑋 ∧ (((invg𝐺)‘) 𝑣) = 𝑢) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
2524ex 413 . . . . . . 7 (((invg𝐺)‘) ∈ 𝑋 → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2621, 25syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2717, 26sylbid 241 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2827rexlimdva 3281 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (∃𝑋 ( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
299, 28mpd 15 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
301gaorb 18375 . . 3 (𝑣 𝑢 ↔ (𝑣𝑌𝑢𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
317, 8, 29, 30syl3anbrc 1335 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣 𝑢)
328adantrr 713 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢𝑌)
33 simprr 769 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑣 𝑤)
341gaorb 18375 . . . . 5 (𝑣 𝑤 ↔ (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3533, 34sylib 219 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3635simp2d 1135 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑤𝑌)
379adantrr 713 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑋 ( 𝑢) = 𝑣)
3835simp3d 1136 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑤)
39 reeanv 3365 . . . . 5 (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) ↔ (∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
4018ad2antrr 722 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝐺 ∈ Grp)
41 simprlr 776 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑘𝑋)
42 simprll 775 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑋)
43 eqid 2818 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4414, 43grpcl 18049 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘𝑋𝑋) → (𝑘(+g𝐺)) ∈ 𝑋)
4540, 41, 42, 44syl3anc 1363 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘(+g𝐺)) ∈ 𝑋)
46 simpll 763 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∈ (𝐺 GrpAct 𝑌))
4732adantr 481 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑢𝑌)
4814, 43gaass 18365 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑘𝑋𝑋𝑢𝑌)) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
4946, 41, 42, 47, 48syl13anc 1364 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
50 simprrl 777 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ( 𝑢) = 𝑣)
5150oveq2d 7161 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 ( 𝑢)) = (𝑘 𝑣))
52 simprrr 778 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 𝑣) = 𝑤)
5349, 51, 523eqtrd 2857 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = 𝑤)
54 oveq1 7152 . . . . . . . . . 10 (𝑓 = (𝑘(+g𝐺)) → (𝑓 𝑢) = ((𝑘(+g𝐺)) 𝑢))
5554eqeq1d 2820 . . . . . . . . 9 (𝑓 = (𝑘(+g𝐺)) → ((𝑓 𝑢) = 𝑤 ↔ ((𝑘(+g𝐺)) 𝑢) = 𝑤))
5655rspcev 3620 . . . . . . . 8 (((𝑘(+g𝐺)) ∈ 𝑋 ∧ ((𝑘(+g𝐺)) 𝑢) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5745, 53, 56syl2anc 584 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5857expr 457 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ (𝑋𝑘𝑋)) → ((( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
5958rexlimdvva 3291 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6039, 59syl5bir 244 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ((∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6137, 38, 60mp2and 695 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
621gaorb 18375 . . 3 (𝑢 𝑤 ↔ (𝑢𝑌𝑤𝑌 ∧ ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6332, 36, 61, 62syl3anbrc 1335 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢 𝑤)
6418adantr 481 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → 𝐺 ∈ Grp)
65 eqid 2818 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6614, 65grpidcl 18069 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
6764, 66syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → (0g𝐺) ∈ 𝑋)
6865gagrpid 18362 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ((0g𝐺) 𝑢) = 𝑢)
69 oveq1 7152 . . . . . . . . 9 ( = (0g𝐺) → ( 𝑢) = ((0g𝐺) 𝑢))
7069eqeq1d 2820 . . . . . . . 8 ( = (0g𝐺) → (( 𝑢) = 𝑢 ↔ ((0g𝐺) 𝑢) = 𝑢))
7170rspcev 3620 . . . . . . 7 (((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝑢) = 𝑢) → ∃𝑋 ( 𝑢) = 𝑢)
7267, 68, 71syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ∃𝑋 ( 𝑢) = 𝑢)
7372ex 413 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 → ∃𝑋 ( 𝑢) = 𝑢))
7473pm4.71rd 563 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌)))
75 df-3an 1081 . . . . 5 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ ((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢))
76 anidm 565 . . . . . 6 ((𝑢𝑌𝑢𝑌) ↔ 𝑢𝑌)
7776anbi2ci 624 . . . . 5 (((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7875, 77bitri 276 . . . 4 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7974, 78syl6bbr 290 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢)))
801gaorb 18375 . . 3 (𝑢 𝑢 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢))
8179, 80syl6bbr 290 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌𝑢 𝑢))
823, 31, 63, 81iserd 8304 1 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  wss 3933  {cpr 4559   class class class wbr 5057  {copab 5119  Rel wrel 5553  cfv 6348  (class class class)co 7145   Er wer 8275  Basecbs 16471  +gcplusg 16553  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042   GrpAct cga 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-map 8397  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-ga 18358
This theorem is referenced by:  sylow1lem3  18654  sylow1lem5  18656  sylow2alem1  18671  sylow2alem2  18672  sylow2a  18673  sylow3lem3  18683
  Copyright terms: Public domain W3C validator