MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorber Structured version   Visualization version   GIF version

Theorem gaorber 17787
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
gaorber.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaorber ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Distinct variable groups:   𝑥,𝑔,𝑦,   𝑔,𝑋,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorber
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
21relopabi 5278 . . 3 Rel
32a1i 11 . 2 ( ∈ (𝐺 GrpAct 𝑌) → Rel )
4 simpr 476 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢 𝑣)
51gaorb 17786 . . . . 5 (𝑢 𝑣 ↔ (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
64, 5sylib 208 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
76simp2d 1094 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣𝑌)
86simp1d 1093 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢𝑌)
96simp3d 1095 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑋 ( 𝑢) = 𝑣)
10 simpll 805 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ∈ (𝐺 GrpAct 𝑌))
11 simpr 476 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑋)
128adantr 480 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑢𝑌)
137adantr 480 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑣𝑌)
14 gaorber.2 . . . . . . . 8 𝑋 = (Base‘𝐺)
15 eqid 2651 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1614, 15gacan 17784 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑋𝑢𝑌𝑣𝑌)) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
1710, 11, 12, 13, 16syl13anc 1368 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
18 gagrp 17771 . . . . . . . . 9 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
1918adantr 480 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝐺 ∈ Grp)
2014, 15grpinvcl 17514 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
2119, 20sylan 487 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
22 oveq1 6697 . . . . . . . . . 10 (𝑘 = ((invg𝐺)‘) → (𝑘 𝑣) = (((invg𝐺)‘) 𝑣))
2322eqeq1d 2653 . . . . . . . . 9 (𝑘 = ((invg𝐺)‘) → ((𝑘 𝑣) = 𝑢 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
2423rspcev 3340 . . . . . . . 8 ((((invg𝐺)‘) ∈ 𝑋 ∧ (((invg𝐺)‘) 𝑣) = 𝑢) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
2524ex 449 . . . . . . 7 (((invg𝐺)‘) ∈ 𝑋 → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2621, 25syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2717, 26sylbid 230 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2827rexlimdva 3060 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (∃𝑋 ( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
299, 28mpd 15 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
301gaorb 17786 . . 3 (𝑣 𝑢 ↔ (𝑣𝑌𝑢𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
317, 8, 29, 30syl3anbrc 1265 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣 𝑢)
328adantrr 753 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢𝑌)
33 simprr 811 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑣 𝑤)
341gaorb 17786 . . . . 5 (𝑣 𝑤 ↔ (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3533, 34sylib 208 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3635simp2d 1094 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑤𝑌)
379adantrr 753 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑋 ( 𝑢) = 𝑣)
3835simp3d 1095 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑤)
39 reeanv 3136 . . . . 5 (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) ↔ (∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
4018ad2antrr 762 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝐺 ∈ Grp)
41 simprlr 820 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑘𝑋)
42 simprll 819 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑋)
43 eqid 2651 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4414, 43grpcl 17477 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘𝑋𝑋) → (𝑘(+g𝐺)) ∈ 𝑋)
4540, 41, 42, 44syl3anc 1366 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘(+g𝐺)) ∈ 𝑋)
46 simpll 805 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∈ (𝐺 GrpAct 𝑌))
4732adantr 480 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑢𝑌)
4814, 43gaass 17776 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑘𝑋𝑋𝑢𝑌)) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
4946, 41, 42, 47, 48syl13anc 1368 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
50 simprrl 821 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ( 𝑢) = 𝑣)
5150oveq2d 6706 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 ( 𝑢)) = (𝑘 𝑣))
52 simprrr 822 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 𝑣) = 𝑤)
5349, 51, 523eqtrd 2689 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = 𝑤)
54 oveq1 6697 . . . . . . . . . 10 (𝑓 = (𝑘(+g𝐺)) → (𝑓 𝑢) = ((𝑘(+g𝐺)) 𝑢))
5554eqeq1d 2653 . . . . . . . . 9 (𝑓 = (𝑘(+g𝐺)) → ((𝑓 𝑢) = 𝑤 ↔ ((𝑘(+g𝐺)) 𝑢) = 𝑤))
5655rspcev 3340 . . . . . . . 8 (((𝑘(+g𝐺)) ∈ 𝑋 ∧ ((𝑘(+g𝐺)) 𝑢) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5745, 53, 56syl2anc 694 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5857expr 642 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ (𝑋𝑘𝑋)) → ((( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
5958rexlimdvva 3067 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6039, 59syl5bir 233 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ((∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6137, 38, 60mp2and 715 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
621gaorb 17786 . . 3 (𝑢 𝑤 ↔ (𝑢𝑌𝑤𝑌 ∧ ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6332, 36, 61, 62syl3anbrc 1265 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢 𝑤)
6418adantr 480 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → 𝐺 ∈ Grp)
65 eqid 2651 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6614, 65grpidcl 17497 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
6764, 66syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → (0g𝐺) ∈ 𝑋)
6865gagrpid 17773 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ((0g𝐺) 𝑢) = 𝑢)
69 oveq1 6697 . . . . . . . . 9 ( = (0g𝐺) → ( 𝑢) = ((0g𝐺) 𝑢))
7069eqeq1d 2653 . . . . . . . 8 ( = (0g𝐺) → (( 𝑢) = 𝑢 ↔ ((0g𝐺) 𝑢) = 𝑢))
7170rspcev 3340 . . . . . . 7 (((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝑢) = 𝑢) → ∃𝑋 ( 𝑢) = 𝑢)
7267, 68, 71syl2anc 694 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ∃𝑋 ( 𝑢) = 𝑢)
7372ex 449 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 → ∃𝑋 ( 𝑢) = 𝑢))
7473pm4.71rd 668 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌)))
75 df-3an 1056 . . . . 5 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ ((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢))
76 anidm 677 . . . . . 6 ((𝑢𝑌𝑢𝑌) ↔ 𝑢𝑌)
7776anbi2ci 732 . . . . 5 (((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7875, 77bitri 264 . . . 4 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7974, 78syl6bbr 278 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢)))
801gaorb 17786 . . 3 (𝑢 𝑢 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢))
8179, 80syl6bbr 278 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌𝑢 𝑢))
823, 31, 63, 81iserd 7813 1 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  wss 3607  {cpr 4212   class class class wbr 4685  {copab 4745  Rel wrel 5148  cfv 5926  (class class class)co 6690   Er wer 7784  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Grpcgrp 17469  invgcminusg 17470   GrpAct cga 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-map 7901  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-ga 17769
This theorem is referenced by:  sylow1lem3  18061  sylow1lem5  18063  sylow2alem1  18078  sylow2alem2  18079  sylow2a  18080  sylow3lem3  18090
  Copyright terms: Public domain W3C validator