MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Visualization version   GIF version

Theorem gapm 17785
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1 𝑋 = (Base‘𝐺)
gapm.2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
Assertion
Ref Expression
gapm (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem gapm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
2 gapm.1 . . . . 5 𝑋 = (Base‘𝐺)
32gaf 17774 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
43ad2antrr 762 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → :(𝑋 × 𝑌)⟶𝑌)
5 simplr 807 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝐴𝑋)
6 simpr 476 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝑥𝑌)
74, 5, 6fovrnd 6848 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → (𝐴 𝑥) ∈ 𝑌)
83ad2antrr 762 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
9 gagrp 17771 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 762 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐺 ∈ Grp)
11 simplr 807 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐴𝑋)
12 eqid 2651 . . . . 5 (invg𝐺) = (invg𝐺)
132, 12grpinvcl 17514 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
1410, 11, 13syl2anc 694 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr 476 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
168, 14, 15fovrnd 6848 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → (((invg𝐺)‘𝐴) 𝑦) ∈ 𝑌)
17 simpll 805 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ∈ (𝐺 GrpAct 𝑌))
18 simplr 807 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝐴𝑋)
19 simprl 809 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
20 simprr 811 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
212, 12gacan 17784 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2217, 18, 19, 20, 21syl13anc 1368 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2322bicomd 213 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((((invg𝐺)‘𝐴) 𝑦) = 𝑥 ↔ (𝐴 𝑥) = 𝑦))
24 eqcom 2658 . . 3 (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥)
25 eqcom 2658 . . 3 (𝑦 = (𝐴 𝑥) ↔ (𝐴 𝑥) = 𝑦)
2623, 24, 253bitr4g 303 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ 𝑦 = (𝐴 𝑥)))
271, 7, 16, 26f1o2d 6929 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cmpt 4762   × cxp 5141  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  Basecbs 15904  Grpcgrp 17469  invgcminusg 17470   GrpAct cga 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-ga 17769
This theorem is referenced by:  galactghm  17869
  Copyright terms: Public domain W3C validator