MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2d Structured version   Visualization version   GIF version

Theorem gausslemma2d 24844
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S={2,4,6,...,(p-1)}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 24843 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
7 eldifi 3693 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 15175 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
98nnred 10885 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
10 prmgt1 15196 . . . . . . . 8 (𝑃 ∈ ℙ → 1 < 𝑃)
119, 10jca 552 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
121, 7, 113syl 18 . . . . . 6 (𝜑 → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
13 1mod 12522 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1412, 13syl 17 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1514eqcomd 2615 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1615eqeq2d 2619 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
17 neg1z 11249 . . . . . . . . . . 11 -1 ∈ ℤ
181, 4, 2, 5gausslemma2dlem0h 24833 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
19 zexpcl 12695 . . . . . . . . . . 11 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
2017, 18, 19sylancr 693 . . . . . . . . . 10 (𝜑 → (-1↑𝑁) ∈ ℤ)
21 2nn 11035 . . . . . . . . . . . . 13 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
231, 2gausslemma2dlem0b 24827 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ ℕ)
2423nnnn0d 11201 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
2522, 24nnexpcld 12850 . . . . . . . . . . 11 (𝜑 → (2↑𝐻) ∈ ℕ)
2625nnzd 11316 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℤ)
2720, 26zmulcld 11323 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
2827zred 11317 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℝ)
29 1red 9912 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3028, 29jca 552 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
3130adantr 479 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
321gausslemma2dlem0a 24826 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3332nnrpd 11705 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
3420, 33jca 552 . . . . . . 7 (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
3534adantr 479 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
36 simpr 475 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
37 modmul1 12543 . . . . . 6 (((((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3831, 35, 36, 37syl3anc 1317 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3938ex 448 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
4020zcnd 11318 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4125nncnd 10886 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4240, 41, 40mul32d 10098 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4318nn0cnd 11203 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
44432timesd 11125 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4544eqcomd 2615 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4645oveq2d 6543 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
47 neg1cn 10974 . . . . . . . . . . . 12 -1 ∈ ℂ
4847a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
4948, 18, 18expaddd 12830 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
5018nn0zd 11315 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
51 m1expeven 12727 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5346, 49, 523eqtr3d 2651 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5453oveq1d 6542 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5541mulid2d 9915 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5642, 54, 553eqtrd 2647 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5756oveq1d 6542 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5840mulid2d 9915 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
5958oveq1d 6542 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
6057, 59eqeq12d 2624 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
612oveq2i 6538 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6261oveq1i 6537 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6362eqeq1i 2614 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
64 2z 11245 . . . . . . . . . 10 2 ∈ ℤ
65 lgsvalmod 24786 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6664, 1, 65sylancr 693 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6766eqcomd 2615 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6867eqeq1d 2611 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
691, 4, 2, 5gausslemma2dlem0i 24834 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7068, 69sylbid 228 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7163, 70syl5bi 230 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7260, 71sylbid 228 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7339, 72syld 45 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7416, 73sylbid 228 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
756, 74mpd 15 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  cdif 3536  ifcif 4035  {csn 4124   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9791  cr 9792  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  cmin 10118  -cneg 10119   / cdiv 10536  cn 10870  2c2 10920  4c4 10922  0cn0 11142  cz 11213  +crp 11667  ...cfz 12155  cfl 12411   mod cmo 12488  cexp 12680  cprime 15172   /L clgs 24764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-n0 11143  df-z 11214  df-uz 11523  df-q 11624  df-rp 11668  df-ioo 12009  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-prod 14424  df-dvds 14771  df-gcd 15004  df-prm 15173  df-phi 15258  df-pc 15329  df-lgs 24765
This theorem is referenced by:  2lgs  24877
  Copyright terms: Public domain W3C validator