MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 24983
Description: Auxiliary lemma 3 for gausslemma2d 24999. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 3710 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 24982 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 11295 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 554 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 15312 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 10971 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 10292 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 11034 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 10014 . . . . . . . 8 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 10900 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 11243 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 11298 . . . . . . . . 9 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 11185 . . . . . . . . . 10 1 ≤ 2
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 10906 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 10141 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 11056 . . . . . . . . . 10 0 < 2
2312, 22pm3.2i 471 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 10842 . . . . . . . 8 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1323 . . . . . . 7 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 247 . . . . . 6 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
282, 8, 273syl 18 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃)
291, 28syl 17 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
304, 29syl5eqbr 4648 . . 3 (𝜑𝐻 < 𝑃)
31 prmndvdsfaclt 15359 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
327, 30, 31sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
336faccld 13011 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3433nnzd 11425 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
35 nnz 11343 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
362, 8, 353syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
371, 36syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
38 gcdcom 15159 . . . . 5 (((!‘𝐻) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3934, 37, 38syl2anc 692 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
4039eqeq1d 2623 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
41 coprm 15347 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
423, 34, 41syl2anc 692 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4340, 42bitr4d 271 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4432, 43mpbird 247 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cdif 3552  {csn 4148   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  !cfa 13000  cdvds 14907   gcd cgcd 15140  cprime 15309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310
This theorem is referenced by:  gausslemma2dlem7  24998
  Copyright terms: Public domain W3C validator