MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem1a Structured version   Visualization version   GIF version

Theorem gausslemma2dlem1a 25935
Description: Lemma for gausslemma2dlem1 25936. (Contributed by AV, 1-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
Assertion
Ref Expression
gausslemma2dlem1a (𝜑 → ran 𝑅 = (1...𝐻))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem1a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.r . . . . 5 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
21elrnmpt 5822 . . . 4 (𝑦 ∈ V → (𝑦 ∈ ran 𝑅 ↔ ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
32elv 3499 . . 3 (𝑦 ∈ ran 𝑅 ↔ ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 iftrue 4472 . . . . . . . . 9 ((𝑥 · 2) < (𝑃 / 2) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑥 · 2))
54eqeq2d 2832 . . . . . . . 8 ((𝑥 · 2) < (𝑃 / 2) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = (𝑥 · 2)))
65adantr 483 . . . . . . 7 (((𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = (𝑥 · 2)))
7 elfz1b 12970 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝐻) ↔ (𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻))
8 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
9 2nn 11704 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
109a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ → 2 ∈ ℕ)
118, 10nnmulcld 11684 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → (𝑥 · 2) ∈ ℕ)
12113ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝑥 · 2) ∈ ℕ)
13123ad2ant1 1129 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑 ∧ (𝑥 · 2) < (𝑃 / 2)) → (𝑥 · 2) ∈ ℕ)
14 gausslemma2d.h . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝑃 − 1) / 2)
1514eleq1i 2903 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ ℕ ↔ ((𝑃 − 1) / 2) ∈ ℕ)
1615biimpi 218 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℕ)
17163ad2ant2 1130 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → ((𝑃 − 1) / 2) ∈ ℕ)
18173ad2ant1 1129 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑 ∧ (𝑥 · 2) < (𝑃 / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
19 gausslemma2d.p . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ (ℙ ∖ {2}))
20 nnoddn2prm 16142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
21 nnz 11998 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
2221anim1i 616 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
2320, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
24 nnz 11998 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
25 2z 12008 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℤ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℕ → 2 ∈ ℤ)
2724, 26zmulcld 12087 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → (𝑥 · 2) ∈ ℤ)
28273ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝑥 · 2) ∈ ℤ)
2923, 28anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ (𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻)) → ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ (𝑥 · 2) ∈ ℤ))
30 df-3an 1085 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ) ↔ ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ (𝑥 · 2) ∈ ℤ))
3129, 30sylibr 236 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ (𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻)) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ))
3231ex 415 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ)))
3319, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ)))
3433impcom 410 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ))
35 ltoddhalfle 15704 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ) → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑) → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
3736biimp3a 1465 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑 ∧ (𝑥 · 2) < (𝑃 / 2)) → (𝑥 · 2) ≤ ((𝑃 − 1) / 2))
3813, 18, 373jca 1124 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) ∧ 𝜑 ∧ (𝑥 · 2) < (𝑃 / 2)) → ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
39383exp 1115 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝜑 → ((𝑥 · 2) < (𝑃 / 2) → ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))))
407, 39sylbi 219 . . . . . . . . . . 11 (𝑥 ∈ (1...𝐻) → (𝜑 → ((𝑥 · 2) < (𝑃 / 2) → ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))))
4140impcom 410 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝐻)) → ((𝑥 · 2) < (𝑃 / 2) → ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2))))
4241impcom 410 . . . . . . . . 9 (((𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
4314oveq2i 7161 . . . . . . . . . . 11 (1...𝐻) = (1...((𝑃 − 1) / 2))
4443eleq2i 2904 . . . . . . . . . 10 ((𝑥 · 2) ∈ (1...𝐻) ↔ (𝑥 · 2) ∈ (1...((𝑃 − 1) / 2)))
45 elfz1b 12970 . . . . . . . . . 10 ((𝑥 · 2) ∈ (1...((𝑃 − 1) / 2)) ↔ ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
4644, 45bitri 277 . . . . . . . . 9 ((𝑥 · 2) ∈ (1...𝐻) ↔ ((𝑥 · 2) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (𝑥 · 2) ≤ ((𝑃 − 1) / 2)))
4742, 46sylibr 236 . . . . . . . 8 (((𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑥 · 2) ∈ (1...𝐻))
48 eleq1 2900 . . . . . . . 8 (𝑦 = (𝑥 · 2) → (𝑦 ∈ (1...𝐻) ↔ (𝑥 · 2) ∈ (1...𝐻)))
4947, 48syl5ibrcom 249 . . . . . . 7 (((𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = (𝑥 · 2) → 𝑦 ∈ (1...𝐻)))
506, 49sylbid 242 . . . . . 6 (((𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) → 𝑦 ∈ (1...𝐻)))
51 iffalse 4475 . . . . . . . . 9 (¬ (𝑥 · 2) < (𝑃 / 2) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑥 · 2)))
5251eqeq2d 2832 . . . . . . . 8 (¬ (𝑥 · 2) < (𝑃 / 2) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = (𝑃 − (𝑥 · 2))))
5352adantr 483 . . . . . . 7 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = (𝑃 − (𝑥 · 2))))
54 eldifi 4102 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
55 prmz 16013 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5619, 54, 553syl 18 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
5756ad2antrl 726 . . . . . . . . . . 11 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → 𝑃 ∈ ℤ)
58 elfzelz 12902 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝐻) → 𝑥 ∈ ℤ)
5925a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝐻) → 2 ∈ ℤ)
6058, 59zmulcld 12087 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝐻) → (𝑥 · 2) ∈ ℤ)
6160ad2antll 727 . . . . . . . . . . 11 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑥 · 2) ∈ ℤ)
6257, 61zsubcld 12086 . . . . . . . . . 10 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑃 − (𝑥 · 2)) ∈ ℤ)
6355zred 12081 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
64 nnre 11639 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6564adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → 𝑥 ∈ ℝ)
66 peano2rem 10947 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
6766adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (𝑃 − 1) ∈ ℝ)
68 2re 11705 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
69 2pos 11734 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
7068, 69pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
7170a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (2 ∈ ℝ ∧ 0 < 2))
72 lemuldiv 11514 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑥 · 2) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
7365, 67, 71, 72syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → ((𝑥 · 2) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
7414breq2i 5066 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐻𝑥 ≤ ((𝑃 − 1) / 2))
7573, 74syl6rbbr 292 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (𝑥𝐻 ↔ (𝑥 · 2) ≤ (𝑃 − 1)))
7611nnred 11647 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → (𝑥 · 2) ∈ ℝ)
7776adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (𝑥 · 2) ∈ ℝ)
78 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → 𝑃 ∈ ℝ)
7977, 67, 78lesub2d 11242 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → ((𝑥 · 2) ≤ (𝑃 − 1) ↔ (𝑃 − (𝑃 − 1)) ≤ (𝑃 − (𝑥 · 2))))
80 recn 10621 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℝ → 𝑃 ∈ ℂ)
81 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℝ → 1 ∈ ℂ)
8280, 81nncand 10996 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℝ → (𝑃 − (𝑃 − 1)) = 1)
8382adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (𝑃 − (𝑃 − 1)) = 1)
8483breq1d 5068 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → ((𝑃 − (𝑃 − 1)) ≤ (𝑃 − (𝑥 · 2)) ↔ 1 ≤ (𝑃 − (𝑥 · 2))))
8584biimpd 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → ((𝑃 − (𝑃 − 1)) ≤ (𝑃 − (𝑥 · 2)) → 1 ≤ (𝑃 − (𝑥 · 2))))
8679, 85sylbid 242 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → ((𝑥 · 2) ≤ (𝑃 − 1) → 1 ≤ (𝑃 − (𝑥 · 2))))
8775, 86sylbid 242 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℕ ∧ 𝑃 ∈ ℝ) → (𝑥𝐻 → 1 ≤ (𝑃 − (𝑥 · 2))))
8887impancom 454 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑥𝐻) → (𝑃 ∈ ℝ → 1 ≤ (𝑃 − (𝑥 · 2))))
89883adant2 1127 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑥𝐻) → (𝑃 ∈ ℝ → 1 ≤ (𝑃 − (𝑥 · 2))))
907, 89sylbi 219 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝐻) → (𝑃 ∈ ℝ → 1 ≤ (𝑃 − (𝑥 · 2))))
9190com12 32 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ → (𝑥 ∈ (1...𝐻) → 1 ≤ (𝑃 − (𝑥 · 2))))
9263, 91syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑥 ∈ (1...𝐻) → 1 ≤ (𝑃 − (𝑥 · 2))))
9319, 54, 923syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (1...𝐻) → 1 ≤ (𝑃 − (𝑥 · 2))))
9493imp 409 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝐻)) → 1 ≤ (𝑃 − (𝑥 · 2)))
9594adantl 484 . . . . . . . . . 10 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → 1 ≤ (𝑃 − (𝑥 · 2)))
96 elnnz1 12002 . . . . . . . . . 10 ((𝑃 − (𝑥 · 2)) ∈ ℕ ↔ ((𝑃 − (𝑥 · 2)) ∈ ℤ ∧ 1 ≤ (𝑃 − (𝑥 · 2))))
9762, 95, 96sylanbrc 585 . . . . . . . . 9 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑃 − (𝑥 · 2)) ∈ ℕ)
987simp2bi 1142 . . . . . . . . . 10 (𝑥 ∈ (1...𝐻) → 𝐻 ∈ ℕ)
9998ad2antll 727 . . . . . . . . 9 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → 𝐻 ∈ ℕ)
100 nnre 11639 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
101100rehalfcld 11878 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
102101adantr 483 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 / 2) ∈ ℝ)
10360zred 12081 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝐻) → (𝑥 · 2) ∈ ℝ)
104 lenlt 10713 . . . . . . . . . . . . . . 15 (((𝑃 / 2) ∈ ℝ ∧ (𝑥 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑥 · 2) ↔ ¬ (𝑥 · 2) < (𝑃 / 2)))
105102, 103, 104syl2an 597 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ((𝑃 / 2) ≤ (𝑥 · 2) ↔ ¬ (𝑥 · 2) < (𝑃 / 2)))
10622, 60anim12i 614 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ (𝑥 · 2) ∈ ℤ))
107106, 30sylibr 236 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ))
108 halfleoddlt 15705 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑥 · 2) ∈ ℤ) → ((𝑃 / 2) ≤ (𝑥 · 2) ↔ (𝑃 / 2) < (𝑥 · 2)))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ((𝑃 / 2) ≤ (𝑥 · 2) ↔ (𝑃 / 2) < (𝑥 · 2)))
110109biimpa 479 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 / 2) < (𝑥 · 2))
111 nncn 11640 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
112 subhalfhalf 11865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℂ → (𝑃 − (𝑃 / 2)) = (𝑃 / 2))
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → (𝑃 − (𝑃 / 2)) = (𝑃 / 2))
114113breq1d 5068 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → ((𝑃 − (𝑃 / 2)) < (𝑥 · 2) ↔ (𝑃 / 2) < (𝑥 · 2)))
115114ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → ((𝑃 − (𝑃 / 2)) < (𝑥 · 2) ↔ (𝑃 / 2) < (𝑥 · 2)))
116110, 115mpbird 259 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 − (𝑃 / 2)) < (𝑥 · 2))
117100ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → 𝑃 ∈ ℝ)
118101ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑃 / 2) ∈ ℝ)
119103adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑥 · 2) ∈ ℝ)
120117, 118, 1193jca 1124 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑃 ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ ∧ (𝑥 · 2) ∈ ℝ))
121120adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ ∧ (𝑥 · 2) ∈ ℝ))
122 ltsub23 11114 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ ∧ (𝑥 · 2) ∈ ℝ) → ((𝑃 − (𝑃 / 2)) < (𝑥 · 2) ↔ (𝑃 − (𝑥 · 2)) < (𝑃 / 2)))
123121, 122syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → ((𝑃 − (𝑃 / 2)) < (𝑥 · 2) ↔ (𝑃 − (𝑥 · 2)) < (𝑃 / 2)))
124116, 123mpbid 234 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 − (𝑥 · 2)) < (𝑃 / 2))
12521ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → 𝑃 ∈ ℤ)
126 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ¬ 2 ∥ 𝑃)
12760adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑥 · 2) ∈ ℤ)
128125, 127zsubcld 12086 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑃 − (𝑥 · 2)) ∈ ℤ)
129125, 126, 1283jca 1124 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑃 − (𝑥 · 2)) ∈ ℤ))
130129adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑃 − (𝑥 · 2)) ∈ ℤ))
131 ltoddhalfle 15704 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ∧ (𝑃 − (𝑥 · 2)) ∈ ℤ) → ((𝑃 − (𝑥 · 2)) < (𝑃 / 2) ↔ (𝑃 − (𝑥 · 2)) ≤ ((𝑃 − 1) / 2)))
132130, 131syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → ((𝑃 − (𝑥 · 2)) < (𝑃 / 2) ↔ (𝑃 − (𝑥 · 2)) ≤ ((𝑃 − 1) / 2)))
133124, 132mpbid 234 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) ∧ (𝑃 / 2) ≤ (𝑥 · 2)) → (𝑃 − (𝑥 · 2)) ≤ ((𝑃 − 1) / 2))
134133ex 415 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ((𝑃 / 2) ≤ (𝑥 · 2) → (𝑃 − (𝑥 · 2)) ≤ ((𝑃 − 1) / 2)))
13514breq2i 5066 . . . . . . . . . . . . . . 15 ((𝑃 − (𝑥 · 2)) ≤ 𝐻 ↔ (𝑃 − (𝑥 · 2)) ≤ ((𝑃 − 1) / 2))
136134, 135syl6ibr 254 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → ((𝑃 / 2) ≤ (𝑥 · 2) → (𝑃 − (𝑥 · 2)) ≤ 𝐻))
137105, 136sylbird 262 . . . . . . . . . . . . 13 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ (1...𝐻)) → (¬ (𝑥 · 2) < (𝑃 / 2) → (𝑃 − (𝑥 · 2)) ≤ 𝐻))
138137ex 415 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑥 ∈ (1...𝐻) → (¬ (𝑥 · 2) < (𝑃 / 2) → (𝑃 − (𝑥 · 2)) ≤ 𝐻)))
13919, 20, 1383syl 18 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (1...𝐻) → (¬ (𝑥 · 2) < (𝑃 / 2) → (𝑃 − (𝑥 · 2)) ≤ 𝐻)))
140139imp 409 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝐻)) → (¬ (𝑥 · 2) < (𝑃 / 2) → (𝑃 − (𝑥 · 2)) ≤ 𝐻))
141140impcom 410 . . . . . . . . 9 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑃 − (𝑥 · 2)) ≤ 𝐻)
142 elfz1b 12970 . . . . . . . . 9 ((𝑃 − (𝑥 · 2)) ∈ (1...𝐻) ↔ ((𝑃 − (𝑥 · 2)) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑃 − (𝑥 · 2)) ≤ 𝐻))
14397, 99, 141, 142syl3anbrc 1339 . . . . . . . 8 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑃 − (𝑥 · 2)) ∈ (1...𝐻))
144 eleq1 2900 . . . . . . . 8 (𝑦 = (𝑃 − (𝑥 · 2)) → (𝑦 ∈ (1...𝐻) ↔ (𝑃 − (𝑥 · 2)) ∈ (1...𝐻)))
145143, 144syl5ibrcom 249 . . . . . . 7 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = (𝑃 − (𝑥 · 2)) → 𝑦 ∈ (1...𝐻)))
14653, 145sylbid 242 . . . . . 6 ((¬ (𝑥 · 2) < (𝑃 / 2) ∧ (𝜑𝑥 ∈ (1...𝐻))) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) → 𝑦 ∈ (1...𝐻)))
14750, 146pm2.61ian 810 . . . . 5 ((𝜑𝑥 ∈ (1...𝐻)) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) → 𝑦 ∈ (1...𝐻)))
148147rexlimdva 3284 . . . 4 (𝜑 → (∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) → 𝑦 ∈ (1...𝐻)))
149 elfz1b 12970 . . . . . . . . . 10 (𝑦 ∈ (1...𝐻) ↔ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻))
150 simp1 1132 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → 𝑦 ∈ ℕ)
151 simpl 485 . . . . . . . . . . . . 13 ((2 ∥ 𝑦𝜑) → 2 ∥ 𝑦)
152 nnehalf 15724 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 2 ∥ 𝑦) → (𝑦 / 2) ∈ ℕ)
153150, 151, 152syl2anr 598 . . . . . . . . . . . 12 (((2 ∥ 𝑦𝜑) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑦 / 2) ∈ ℕ)
154 simpr2 1191 . . . . . . . . . . . 12 (((2 ∥ 𝑦𝜑) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝐻 ∈ ℕ)
155 nnre 11639 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
156155ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (2 ∥ 𝑦𝜑)) → 𝑦 ∈ ℝ)
157 nnrp 12394 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ ℕ → 𝐻 ∈ ℝ+)
158157adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → 𝐻 ∈ ℝ+)
159158adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (2 ∥ 𝑦𝜑)) → 𝐻 ∈ ℝ+)
160 2rp 12388 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
161 1le2 11840 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
162160, 161pm3.2i 473 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ+ ∧ 1 ≤ 2)
163162a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (2 ∥ 𝑦𝜑)) → (2 ∈ ℝ+ ∧ 1 ≤ 2))
164 ledivge1le 12454 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝐻 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 ≤ 2)) → (𝑦𝐻 → (𝑦 / 2) ≤ 𝐻))
165156, 159, 163, 164syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (2 ∥ 𝑦𝜑)) → (𝑦𝐻 → (𝑦 / 2) ≤ 𝐻))
166165ex 415 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → ((2 ∥ 𝑦𝜑) → (𝑦𝐻 → (𝑦 / 2) ≤ 𝐻)))
167166com23 86 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦𝐻 → ((2 ∥ 𝑦𝜑) → (𝑦 / 2) ≤ 𝐻)))
1681673impia 1113 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ((2 ∥ 𝑦𝜑) → (𝑦 / 2) ≤ 𝐻))
169168impcom 410 . . . . . . . . . . . 12 (((2 ∥ 𝑦𝜑) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑦 / 2) ≤ 𝐻)
170153, 154, 1693jca 1124 . . . . . . . . . . 11 (((2 ∥ 𝑦𝜑) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → ((𝑦 / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑦 / 2) ≤ 𝐻))
171170ex 415 . . . . . . . . . 10 ((2 ∥ 𝑦𝜑) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ((𝑦 / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑦 / 2) ≤ 𝐻)))
172149, 171syl5bi 244 . . . . . . . . 9 ((2 ∥ 𝑦𝜑) → (𝑦 ∈ (1...𝐻) → ((𝑦 / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑦 / 2) ≤ 𝐻)))
1731723impia 1113 . . . . . . . 8 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ((𝑦 / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑦 / 2) ≤ 𝐻))
174 elfz1b 12970 . . . . . . . 8 ((𝑦 / 2) ∈ (1...𝐻) ↔ ((𝑦 / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ (𝑦 / 2) ≤ 𝐻))
175173, 174sylibr 236 . . . . . . 7 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (𝑦 / 2) ∈ (1...𝐻))
176 oveq1 7157 . . . . . . . . . . 11 (𝑥 = (𝑦 / 2) → (𝑥 · 2) = ((𝑦 / 2) · 2))
177176breq1d 5068 . . . . . . . . . 10 (𝑥 = (𝑦 / 2) → ((𝑥 · 2) < (𝑃 / 2) ↔ ((𝑦 / 2) · 2) < (𝑃 / 2)))
178176oveq2d 7166 . . . . . . . . . 10 (𝑥 = (𝑦 / 2) → (𝑃 − (𝑥 · 2)) = (𝑃 − ((𝑦 / 2) · 2)))
179177, 176, 178ifbieq12d 4493 . . . . . . . . 9 (𝑥 = (𝑦 / 2) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if(((𝑦 / 2) · 2) < (𝑃 / 2), ((𝑦 / 2) · 2), (𝑃 − ((𝑦 / 2) · 2))))
180179eqeq2d 2832 . . . . . . . 8 (𝑥 = (𝑦 / 2) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = if(((𝑦 / 2) · 2) < (𝑃 / 2), ((𝑦 / 2) · 2), (𝑃 − ((𝑦 / 2) · 2)))))
181180adantl 484 . . . . . . 7 (((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) ∧ 𝑥 = (𝑦 / 2)) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = if(((𝑦 / 2) · 2) < (𝑃 / 2), ((𝑦 / 2) · 2), (𝑃 − ((𝑦 / 2) · 2)))))
182 elfzelz 12902 . . . . . . . . . . . . 13 (𝑦 ∈ (1...𝐻) → 𝑦 ∈ ℤ)
183182zcnd 12082 . . . . . . . . . . . 12 (𝑦 ∈ (1...𝐻) → 𝑦 ∈ ℂ)
1841833ad2ant3 1131 . . . . . . . . . . 11 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑦 ∈ ℂ)
185 2cnd 11709 . . . . . . . . . . 11 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 2 ∈ ℂ)
186 2ne0 11735 . . . . . . . . . . . 12 2 ≠ 0
187186a1i 11 . . . . . . . . . . 11 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 2 ≠ 0)
188184, 185, 187divcan1d 11411 . . . . . . . . . 10 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ((𝑦 / 2) · 2) = 𝑦)
18914breq2i 5066 . . . . . . . . . . . . . . . 16 (𝑦𝐻𝑦 ≤ ((𝑃 − 1) / 2))
190 nnz 11998 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
19119, 20, 223syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
192191adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∥ 𝑦𝜑) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
193190, 192anim12ci 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (2 ∥ 𝑦𝜑)) → ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑦 ∈ ℤ))
194 df-3an 1085 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃𝑦 ∈ ℤ) ↔ ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑦 ∈ ℤ))
195193, 194sylibr 236 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ (2 ∥ 𝑦𝜑)) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃𝑦 ∈ ℤ))
196 ltoddhalfle 15704 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃𝑦 ∈ ℤ) → (𝑦 < (𝑃 / 2) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
197195, 196syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ (2 ∥ 𝑦𝜑)) → (𝑦 < (𝑃 / 2) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
198197exbiri 809 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → ((2 ∥ 𝑦𝜑) → (𝑦 ≤ ((𝑃 − 1) / 2) → 𝑦 < (𝑃 / 2))))
199198com23 86 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (𝑦 ≤ ((𝑃 − 1) / 2) → ((2 ∥ 𝑦𝜑) → 𝑦 < (𝑃 / 2))))
200189, 199syl5bi 244 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦𝐻 → ((2 ∥ 𝑦𝜑) → 𝑦 < (𝑃 / 2))))
201200a1d 25 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝐻 ∈ ℕ → (𝑦𝐻 → ((2 ∥ 𝑦𝜑) → 𝑦 < (𝑃 / 2)))))
2022013imp 1107 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ((2 ∥ 𝑦𝜑) → 𝑦 < (𝑃 / 2)))
203149, 202sylbi 219 . . . . . . . . . . . 12 (𝑦 ∈ (1...𝐻) → ((2 ∥ 𝑦𝜑) → 𝑦 < (𝑃 / 2)))
204203com12 32 . . . . . . . . . . 11 ((2 ∥ 𝑦𝜑) → (𝑦 ∈ (1...𝐻) → 𝑦 < (𝑃 / 2)))
2052043impia 1113 . . . . . . . . . 10 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑦 < (𝑃 / 2))
206188, 205eqbrtrd 5080 . . . . . . . . 9 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ((𝑦 / 2) · 2) < (𝑃 / 2))
207206iftrued 4474 . . . . . . . 8 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → if(((𝑦 / 2) · 2) < (𝑃 / 2), ((𝑦 / 2) · 2), (𝑃 − ((𝑦 / 2) · 2))) = ((𝑦 / 2) · 2))
208207, 188eqtr2d 2857 . . . . . . 7 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑦 = if(((𝑦 / 2) · 2) < (𝑃 / 2), ((𝑦 / 2) · 2), (𝑃 − ((𝑦 / 2) · 2))))
209175, 181, 208rspcedvd 3625 . . . . . 6 ((2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2102093exp 1115 . . . . 5 (2 ∥ 𝑦 → (𝜑 → (𝑦 ∈ (1...𝐻) → ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))))
21154, 55syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
212211ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝑃 ∈ ℤ)
2131903ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → 𝑦 ∈ ℤ)
214213adantl 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝑦 ∈ ℤ)
215212, 214zsubcld 12086 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑃𝑦) ∈ ℤ)
216155ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ)) → 𝑦 ∈ ℝ)
21766rehalfcld 11878 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℝ → ((𝑃 − 1) / 2) ∈ ℝ)
218217adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ)) → ((𝑃 − 1) / 2) ∈ ℝ)
219 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ)) → 𝑃 ∈ ℝ)
220216, 218, 2193jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℝ ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ)) → (𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ))
221220ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℝ → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ)))
22254, 63, 2213syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ)))
223222adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ)))
224223impcom 410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ))
225 lesub2 11129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑦 ≤ ((𝑃 − 1) / 2) ↔ (𝑃 − ((𝑃 − 1) / 2)) ≤ (𝑃𝑦)))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (𝑦 ≤ ((𝑃 − 1) / 2) ↔ (𝑃 − ((𝑃 − 1) / 2)) ≤ (𝑃𝑦)))
22755zcnd 12082 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
228 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℂ → 1 ∈ ℂ)
229 2cnne0 11841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 ∈ ℂ ∧ 2 ≠ 0)
230229a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℂ → (2 ∈ ℂ ∧ 2 ≠ 0))
231 divsubdir 11328 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑃 − 1) / 2) = ((𝑃 / 2) − (1 / 2)))
232228, 230, 231mpd3an23 1459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℂ → ((𝑃 − 1) / 2) = ((𝑃 / 2) − (1 / 2)))
233232oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℂ → (𝑃 − ((𝑃 − 1) / 2)) = (𝑃 − ((𝑃 / 2) − (1 / 2))))
234 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℂ → 𝑃 ∈ ℂ)
235 halfcl 11856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℂ → (𝑃 / 2) ∈ ℂ)
236 halfcn 11846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 / 2) ∈ ℂ
237236a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℂ → (1 / 2) ∈ ℂ)
238234, 235, 237subsubd 11019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℂ → (𝑃 − ((𝑃 / 2) − (1 / 2))) = ((𝑃 − (𝑃 / 2)) + (1 / 2)))
239112oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℂ → ((𝑃 − (𝑃 / 2)) + (1 / 2)) = ((𝑃 / 2) + (1 / 2)))
240233, 238, 2393eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℂ → (𝑃 − ((𝑃 − 1) / 2)) = ((𝑃 / 2) + (1 / 2)))
24154, 227, 2403syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − ((𝑃 − 1) / 2)) = ((𝑃 / 2) + (1 / 2)))
242241ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (𝑃 − ((𝑃 − 1) / 2)) = ((𝑃 / 2) + (1 / 2)))
243242breq1d 5068 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → ((𝑃 − ((𝑃 − 1) / 2)) ≤ (𝑃𝑦) ↔ ((𝑃 / 2) + (1 / 2)) ≤ (𝑃𝑦)))
244 prmnn 16012 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
245 halfre 11845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 / 2) ∈ ℝ
246245a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (1 / 2) ∈ ℝ)
247 nngt0 11662 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ → 0 < 𝑃)
24870a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
249 divgt0 11502 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ ℝ ∧ 0 < 𝑃) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑃 / 2))
250100, 247, 248, 249syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → 0 < (𝑃 / 2))
251 halfgt0 11847 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < (1 / 2)
252251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → 0 < (1 / 2))
253101, 246, 250, 252addgt0d 11209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → 0 < ((𝑃 / 2) + (1 / 2)))
25454, 244, 2533syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℙ ∖ {2}) → 0 < ((𝑃 / 2) + (1 / 2)))
255254ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → 0 < ((𝑃 / 2) + (1 / 2)))
256 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → 0 ∈ ℝ)
257 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → 𝑃 ∈ ℝ)
258257rehalfcld 11878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑃 / 2) ∈ ℝ)
259245a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (1 / 2) ∈ ℝ)
260258, 259readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 / 2) + (1 / 2)) ∈ ℝ)
261 resubcl 10944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑃𝑦) ∈ ℝ)
262261ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑃𝑦) ∈ ℝ)
263256, 260, 2623jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ))
264263ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℝ → (𝑃 ∈ ℝ → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
265155, 264syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℕ → (𝑃 ∈ ℝ → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
266265adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑃 ∈ ℝ → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
267266com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℝ → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
26854, 63, 2673syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
269268adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ)))
270269impcom 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ))
271 ltletr 10726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ ((𝑃 / 2) + (1 / 2)) ∈ ℝ ∧ (𝑃𝑦) ∈ ℝ) → ((0 < ((𝑃 / 2) + (1 / 2)) ∧ ((𝑃 / 2) + (1 / 2)) ≤ (𝑃𝑦)) → 0 < (𝑃𝑦)))
272270, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → ((0 < ((𝑃 / 2) + (1 / 2)) ∧ ((𝑃 / 2) + (1 / 2)) ≤ (𝑃𝑦)) → 0 < (𝑃𝑦)))
273255, 272mpand 693 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (((𝑃 / 2) + (1 / 2)) ≤ (𝑃𝑦) → 0 < (𝑃𝑦)))
274243, 273sylbid 242 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → ((𝑃 − ((𝑃 − 1) / 2)) ≤ (𝑃𝑦) → 0 < (𝑃𝑦)))
275226, 274sylbid 242 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦)) → (𝑦 ≤ ((𝑃 − 1) / 2) → 0 < (𝑃𝑦)))
276275ex 415 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → (𝑦 ≤ ((𝑃 − 1) / 2) → 0 < (𝑃𝑦))))
277276com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → 0 < (𝑃𝑦))))
278189, 277syl5bi 244 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ) → (𝑦𝐻 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → 0 < (𝑃𝑦))))
2792783impia 1113 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → 0 < (𝑃𝑦)))
280279impcom 410 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 0 < (𝑃𝑦))
281 elnnz 11985 . . . . . . . . . . . . . . 15 ((𝑃𝑦) ∈ ℕ ↔ ((𝑃𝑦) ∈ ℤ ∧ 0 < (𝑃𝑦)))
282215, 280, 281sylanbrc 585 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑃𝑦) ∈ ℕ)
28323adantr 483 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
284 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → ¬ 2 ∥ 𝑦)
285284, 213anim12ci 615 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑦 ∈ ℤ ∧ ¬ 2 ∥ 𝑦))
286 omoe 15707 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) ∧ (𝑦 ∈ ℤ ∧ ¬ 2 ∥ 𝑦)) → 2 ∥ (𝑃𝑦))
287283, 285, 286syl2an2r 683 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 2 ∥ (𝑃𝑦))
288 nnehalf 15724 . . . . . . . . . . . . . 14 (((𝑃𝑦) ∈ ℕ ∧ 2 ∥ (𝑃𝑦)) → ((𝑃𝑦) / 2) ∈ ℕ)
289282, 287, 288syl2anc 586 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → ((𝑃𝑦) / 2) ∈ ℕ)
290 simpr2 1191 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝐻 ∈ ℕ)
291 1red 10636 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 1 ∈ ℝ)
2921553ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → 𝑦 ∈ ℝ)
293292adantl 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝑦 ∈ ℝ)
29454, 63syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
295294ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 𝑃 ∈ ℝ)
296 nnge1 11659 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2972963ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → 1 ≤ 𝑦)
298297adantl 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → 1 ≤ 𝑦)
299291, 293, 295, 298lesub2dd 11251 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑃𝑦) ≤ (𝑃 − 1))
300295, 293resubcld 11062 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑃𝑦) ∈ ℝ)
30154, 63, 663syl 18 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℝ)
302301ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (𝑃 − 1) ∈ ℝ)
30370a1i 11 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (2 ∈ ℝ ∧ 0 < 2))
304 lediv1 11499 . . . . . . . . . . . . . . . 16 (((𝑃𝑦) ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃𝑦) ≤ (𝑃 − 1) ↔ ((𝑃𝑦) / 2) ≤ ((𝑃 − 1) / 2)))
305300, 302, 303, 304syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → ((𝑃𝑦) ≤ (𝑃 − 1) ↔ ((𝑃𝑦) / 2) ≤ ((𝑃 − 1) / 2)))
306299, 305mpbid 234 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → ((𝑃𝑦) / 2) ≤ ((𝑃 − 1) / 2))
30714breq2i 5066 . . . . . . . . . . . . . 14 (((𝑃𝑦) / 2) ≤ 𝐻 ↔ ((𝑃𝑦) / 2) ≤ ((𝑃 − 1) / 2))
308306, 307sylibr 236 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → ((𝑃𝑦) / 2) ≤ 𝐻)
309289, 290, 3083jca 1124 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻)) → (((𝑃𝑦) / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ ((𝑃𝑦) / 2) ≤ 𝐻))
310309ex 415 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → (((𝑃𝑦) / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ ((𝑃𝑦) / 2) ≤ 𝐻)))
311 elfz1b 12970 . . . . . . . . . . 11 (((𝑃𝑦) / 2) ∈ (1...𝐻) ↔ (((𝑃𝑦) / 2) ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ ((𝑃𝑦) / 2) ≤ 𝐻))
312310, 149, 3113imtr4g 298 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ 𝑦) → (𝑦 ∈ (1...𝐻) → ((𝑃𝑦) / 2) ∈ (1...𝐻)))
313312ex 415 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ 𝑦 → (𝑦 ∈ (1...𝐻) → ((𝑃𝑦) / 2) ∈ (1...𝐻))))
31419, 313syl 17 . . . . . . . 8 (𝜑 → (¬ 2 ∥ 𝑦 → (𝑦 ∈ (1...𝐻) → ((𝑃𝑦) / 2) ∈ (1...𝐻))))
3153143imp21 1110 . . . . . . 7 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ((𝑃𝑦) / 2) ∈ (1...𝐻))
316 oveq1 7157 . . . . . . . . . . 11 (𝑥 = ((𝑃𝑦) / 2) → (𝑥 · 2) = (((𝑃𝑦) / 2) · 2))
317316breq1d 5068 . . . . . . . . . 10 (𝑥 = ((𝑃𝑦) / 2) → ((𝑥 · 2) < (𝑃 / 2) ↔ (((𝑃𝑦) / 2) · 2) < (𝑃 / 2)))
318316oveq2d 7166 . . . . . . . . . 10 (𝑥 = ((𝑃𝑦) / 2) → (𝑃 − (𝑥 · 2)) = (𝑃 − (((𝑃𝑦) / 2) · 2)))
319317, 316, 318ifbieq12d 4493 . . . . . . . . 9 (𝑥 = ((𝑃𝑦) / 2) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((((𝑃𝑦) / 2) · 2) < (𝑃 / 2), (((𝑃𝑦) / 2) · 2), (𝑃 − (((𝑃𝑦) / 2) · 2))))
320319eqeq2d 2832 . . . . . . . 8 (𝑥 = ((𝑃𝑦) / 2) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = if((((𝑃𝑦) / 2) · 2) < (𝑃 / 2), (((𝑃𝑦) / 2) · 2), (𝑃 − (((𝑃𝑦) / 2) · 2)))))
321320adantl 484 . . . . . . 7 (((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) ∧ 𝑥 = ((𝑃𝑦) / 2)) → (𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 = if((((𝑃𝑦) / 2) · 2) < (𝑃 / 2), (((𝑃𝑦) / 2) · 2), (𝑃 − (((𝑃𝑦) / 2) · 2)))))
32219, 54, 2273syl 18 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
3233223ad2ant2 1130 . . . . . . . . . . . 12 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
3241833ad2ant3 1131 . . . . . . . . . . . 12 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑦 ∈ ℂ)
325323, 324subcld 10991 . . . . . . . . . . 11 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (𝑃𝑦) ∈ ℂ)
326 2cnd 11709 . . . . . . . . . . 11 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 2 ∈ ℂ)
327186a1i 11 . . . . . . . . . . 11 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 2 ≠ 0)
328325, 326, 327divcan1d 11411 . . . . . . . . . 10 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (((𝑃𝑦) / 2) · 2) = (𝑃𝑦))
329 zre 11979 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
330 halfge0 11848 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ (1 / 2)
331 rehalfcl 11857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℝ → (𝑃 / 2) ∈ ℝ)
332331adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑃 / 2) ∈ ℝ)
333332, 259subge02d 11226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (0 ≤ (1 / 2) ↔ ((𝑃 / 2) − (1 / 2)) ≤ (𝑃 / 2)))
334330, 333mpbii 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 / 2) − (1 / 2)) ≤ (𝑃 / 2))
335 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → 𝑦 ∈ ℝ)
336245a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℝ → (1 / 2) ∈ ℝ)
337331, 336resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℝ → ((𝑃 / 2) − (1 / 2)) ∈ ℝ)
338337adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 / 2) − (1 / 2)) ∈ ℝ)
339 letr 10728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ ((𝑃 / 2) − (1 / 2)) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → ((𝑦 ≤ ((𝑃 / 2) − (1 / 2)) ∧ ((𝑃 / 2) − (1 / 2)) ≤ (𝑃 / 2)) → 𝑦 ≤ (𝑃 / 2)))
340335, 338, 332, 339syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑦 ≤ ((𝑃 / 2) − (1 / 2)) ∧ ((𝑃 / 2) − (1 / 2)) ≤ (𝑃 / 2)) → 𝑦 ≤ (𝑃 / 2)))
341334, 340mpan2d 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑦 ≤ ((𝑃 / 2) − (1 / 2)) → 𝑦 ≤ (𝑃 / 2)))
34280adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → 𝑃 ∈ ℂ)
343 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → 1 ∈ ℂ)
344229a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (2 ∈ ℂ ∧ 2 ≠ 0))
345342, 343, 344, 231syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 − 1) / 2) = ((𝑃 / 2) − (1 / 2)))
346345breq2d 5070 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑦 ≤ ((𝑃 − 1) / 2) ↔ 𝑦 ≤ ((𝑃 / 2) − (1 / 2))))
347 lesub 11113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 / 2) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑃 / 2) ≤ (𝑃𝑦) ↔ 𝑦 ≤ (𝑃 − (𝑃 / 2))))
348332, 257, 335, 347syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 / 2) ≤ (𝑃𝑦) ↔ 𝑦 ≤ (𝑃 − (𝑃 / 2))))
349258, 262lenltd 10780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((𝑃 / 2) ≤ (𝑃𝑦) ↔ ¬ (𝑃𝑦) < (𝑃 / 2)))
350 2cnd 11709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑃 ∈ ℝ → 2 ∈ ℂ)
351186a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑃 ∈ ℝ → 2 ≠ 0)
35280, 350, 351divcan1d 11411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℝ → ((𝑃 / 2) · 2) = 𝑃)
353352eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℝ → 𝑃 = ((𝑃 / 2) · 2))
354353oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℝ → (𝑃 − (𝑃 / 2)) = (((𝑃 / 2) · 2) − (𝑃 / 2)))
355331recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℝ → (𝑃 / 2) ∈ ℂ)
356355, 350mulcomd 10656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℝ → ((𝑃 / 2) · 2) = (2 · (𝑃 / 2)))
357356oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℝ → (((𝑃 / 2) · 2) − (𝑃 / 2)) = ((2 · (𝑃 / 2)) − (𝑃 / 2)))
358350, 355mulsubfacd 11095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℝ → ((2 · (𝑃 / 2)) − (𝑃 / 2)) = ((2 − 1) · (𝑃 / 2)))
359 2m1e1 11757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (2 − 1) = 1
360359a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℝ → (2 − 1) = 1)
361360oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℝ → ((2 − 1) · (𝑃 / 2)) = (1 · (𝑃 / 2)))
362355mulid2d 10653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℝ → (1 · (𝑃 / 2)) = (𝑃 / 2))
363358, 361, 3623eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℝ → ((2 · (𝑃 / 2)) − (𝑃 / 2)) = (𝑃 / 2))
364354, 357, 3633eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℝ → (𝑃 − (𝑃 / 2)) = (𝑃 / 2))
365364adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑃 − (𝑃 / 2)) = (𝑃 / 2))
366365breq2d 5070 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑦 ≤ (𝑃 − (𝑃 / 2)) ↔ 𝑦 ≤ (𝑃 / 2)))
367348, 349, 3663bitr3d 311 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (¬ (𝑃𝑦) < (𝑃 / 2) ↔ 𝑦 ≤ (𝑃 / 2)))
368341, 346, 3673imtr4d 296 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑦 ≤ ((𝑃 − 1) / 2) → ¬ (𝑃𝑦) < (𝑃 / 2)))
369368ex 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ → (𝑃 ∈ ℝ → (𝑦 ≤ ((𝑃 − 1) / 2) → ¬ (𝑃𝑦) < (𝑃 / 2))))
370155, 369syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (𝑃 ∈ ℝ → (𝑦 ≤ ((𝑃 − 1) / 2) → ¬ (𝑃𝑦) < (𝑃 / 2))))
371370com3l 89 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℝ → (𝑦 ≤ ((𝑃 − 1) / 2) → (𝑦 ∈ ℕ → ¬ (𝑃𝑦) < (𝑃 / 2))))
372329, 371syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (𝑦 ≤ ((𝑃 − 1) / 2) → (𝑦 ∈ ℕ → ¬ (𝑃𝑦) < (𝑃 / 2))))
37354, 55, 3723syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (𝑦 ≤ ((𝑃 − 1) / 2) → (𝑦 ∈ ℕ → ¬ (𝑃𝑦) < (𝑃 / 2))))
37419, 373syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ≤ ((𝑃 − 1) / 2) → (𝑦 ∈ ℕ → ¬ (𝑃𝑦) < (𝑃 / 2))))
375374adantl 484 . . . . . . . . . . . . . . . . 17 ((¬ 2 ∥ 𝑦𝜑) → (𝑦 ≤ ((𝑃 − 1) / 2) → (𝑦 ∈ ℕ → ¬ (𝑃𝑦) < (𝑃 / 2))))
376375com13 88 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (𝑦 ≤ ((𝑃 − 1) / 2) → ((¬ 2 ∥ 𝑦𝜑) → ¬ (𝑃𝑦) < (𝑃 / 2))))
377189, 376syl5bi 244 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦𝐻 → ((¬ 2 ∥ 𝑦𝜑) → ¬ (𝑃𝑦) < (𝑃 / 2))))
378377a1d 25 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝐻 ∈ ℕ → (𝑦𝐻 → ((¬ 2 ∥ 𝑦𝜑) → ¬ (𝑃𝑦) < (𝑃 / 2)))))
3793783imp 1107 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ((¬ 2 ∥ 𝑦𝜑) → ¬ (𝑃𝑦) < (𝑃 / 2)))
380379com12 32 . . . . . . . . . . . 12 ((¬ 2 ∥ 𝑦𝜑) → ((𝑦 ∈ ℕ ∧ 𝐻 ∈ ℕ ∧ 𝑦𝐻) → ¬ (𝑃𝑦) < (𝑃 / 2)))
381149, 380syl5bi 244 . . . . . . . . . . 11 ((¬ 2 ∥ 𝑦𝜑) → (𝑦 ∈ (1...𝐻) → ¬ (𝑃𝑦) < (𝑃 / 2)))
3823813impia 1113 . . . . . . . . . 10 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ¬ (𝑃𝑦) < (𝑃 / 2))
383328, 382eqnbrtrd 5076 . . . . . . . . 9 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ¬ (((𝑃𝑦) / 2) · 2) < (𝑃 / 2))
384383iffalsed 4477 . . . . . . . 8 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → if((((𝑃𝑦) / 2) · 2) < (𝑃 / 2), (((𝑃𝑦) / 2) · 2), (𝑃 − (((𝑃𝑦) / 2) · 2))) = (𝑃 − (((𝑃𝑦) / 2) · 2)))
385328oveq2d 7166 . . . . . . . 8 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (𝑃 − (((𝑃𝑦) / 2) · 2)) = (𝑃 − (𝑃𝑦)))
386322, 183anim12i 614 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...𝐻)) → (𝑃 ∈ ℂ ∧ 𝑦 ∈ ℂ))
3873863adant1 1126 . . . . . . . . 9 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (𝑃 ∈ ℂ ∧ 𝑦 ∈ ℂ))
388 nncan 10909 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑃 − (𝑃𝑦)) = 𝑦)
389387, 388syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → (𝑃 − (𝑃𝑦)) = 𝑦)
390384, 385, 3893eqtrrd 2861 . . . . . . 7 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → 𝑦 = if((((𝑃𝑦) / 2) · 2) < (𝑃 / 2), (((𝑃𝑦) / 2) · 2), (𝑃 − (((𝑃𝑦) / 2) · 2))))
391315, 321, 390rspcedvd 3625 . . . . . 6 ((¬ 2 ∥ 𝑦𝜑𝑦 ∈ (1...𝐻)) → ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
3923913exp 1115 . . . . 5 (¬ 2 ∥ 𝑦 → (𝜑 → (𝑦 ∈ (1...𝐻) → ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))))
393210, 392pm2.61i 184 . . . 4 (𝜑 → (𝑦 ∈ (1...𝐻) → ∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
394148, 393impbid 214 . . 3 (𝜑 → (∃𝑥 ∈ (1...𝐻)𝑦 = if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ↔ 𝑦 ∈ (1...𝐻)))
3953, 394syl5bb 285 . 2 (𝜑 → (𝑦 ∈ ran 𝑅𝑦 ∈ (1...𝐻)))
396395eqrdv 2819 1 (𝜑 → ran 𝑅 = (1...𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  cdif 3932  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138  ran crn 5550  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  cz 11975  +crp 12383  ...cfz 12886  cdvds 15601  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ioo 12736  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010
This theorem is referenced by:  gausslemma2dlem1  25936
  Copyright terms: Public domain W3C validator