Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboge9 Structured version   Visualization version   GIF version

Theorem gboge9 43919
Description: Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 43929, this bound is strict. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboge9 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)

Proof of Theorem gboge9
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbo 43908 . 2 (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
2 df-3an 1084 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
3 an6 1439 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) ↔ ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )))
4 oddprmuzge3 43871 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
5 oddprmuzge3 43871 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
6 oddprmuzge3 43871 . . . . . . . . . . 11 ((𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd ) → 𝑟 ∈ (ℤ‘3))
7 6p3e9 11789 . . . . . . . . . . . 12 (6 + 3) = 9
8 eluzelz 12245 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℤ)
9 eluzelz 12245 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℤ)
10 zaddcl 12014 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
118, 9, 10syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℤ)
1211zred 12079 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℝ)
13 eluzelre 12246 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (ℤ‘3) → 𝑟 ∈ ℝ)
1412, 13anim12i 614 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
15143impa 1105 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
16 6re 11719 . . . . . . . . . . . . . . 15 6 ∈ ℝ
17 3re 11709 . . . . . . . . . . . . . . 15 3 ∈ ℝ
1816, 17pm3.2i 473 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 3 ∈ ℝ)
1915, 18jctil 522 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
20 3p3e6 11781 . . . . . . . . . . . . . . . 16 (3 + 3) = 6
21 eluzelre 12246 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℝ)
22 eluzelre 12246 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℝ)
2321, 22anim12i 614 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
2417, 17pm3.2i 473 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ ∧ 3 ∈ ℝ)
2523, 24jctil 522 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → ((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
26 eluzle 12248 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 3 ≤ 𝑝)
27 eluzle 12248 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 3 ≤ 𝑞)
2826, 27anim12i 614 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 ≤ 𝑝 ∧ 3 ≤ 𝑞))
29 le2add 11114 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
3025, 28, 29sylc 65 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 + 3) ≤ (𝑝 + 𝑞))
3120, 30eqbrtrrid 5093 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
32313adant3 1127 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
33 eluzle 12248 . . . . . . . . . . . . . . 15 (𝑟 ∈ (ℤ‘3) → 3 ≤ 𝑟)
34333ad2ant3 1130 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 3 ≤ 𝑟)
3532, 34jca 514 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟))
36 le2add 11114 . . . . . . . . . . . . 13 (((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟)))
3719, 35, 36sylc 65 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟))
387, 37eqbrtrrid 5093 . . . . . . . . . . 11 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
394, 5, 6, 38syl3an 1155 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
403, 39sylbi 219 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
412, 40sylanbr 584 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
42 breq2 5061 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (9 ≤ 𝑍 ↔ 9 ≤ ((𝑝 + 𝑞) + 𝑟)))
4341, 42syl5ibrcom 249 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 9 ≤ 𝑍))
4443expimpd 456 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4544rexlimdva 3282 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4645a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍)))
4746rexlimdvv 3291 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4847imp 409 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) → 9 ≤ 𝑍)
491, 48sylbi 219 1 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528   + caddc 10532  cle 10668  3c3 11685  6c6 11688  9c9 11691  cz 11973  cuz 12235  cprime 16007   Odd codd 43780   GoldbachOdd cgbo 43902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008  df-even 43781  df-odd 43782  df-gbo 43905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator