Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0id Structured version   Visualization version   GIF version

Theorem gcd0id 15171
 Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 15150 . . . 4 (0 gcd 0) = 0
2 oveq2 6618 . . . 4 (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0))
3 fveq2 6153 . . . . 5 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
4 abs0 13966 . . . . 5 (abs‘0) = 0
53, 4syl6eq 2671 . . . 4 (𝑁 = 0 → (abs‘𝑁) = 0)
61, 2, 53eqtr4a 2681 . . 3 (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁))
76adantl 482 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
8 0z 11339 . . . . . . 7 0 ∈ ℤ
9 gcddvds 15156 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
108, 9mpan 705 . . . . . 6 (𝑁 ∈ ℤ → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
1110simprd 479 . . . . 5 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∥ 𝑁)
1211adantr 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁)
13 gcdcl 15159 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) ∈ ℕ0)
148, 13mpan 705 . . . . . . 7 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℕ0)
1514nn0zd 11431 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℤ)
16 dvdsleabs 14964 . . . . . 6 (((0 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1715, 16syl3an1 1356 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
18173anidm12 1380 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1912, 18mpd 15 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁))
20 zabscl 13994 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
21 dvds0 14928 . . . . . . 7 ((abs‘𝑁) ∈ ℤ → (abs‘𝑁) ∥ 0)
2220, 21syl 17 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 0)
23 iddvds 14926 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
24 absdvdsb 14931 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2524anidms 676 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2623, 25mpbid 222 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 𝑁)
2722, 26jca 554 . . . . 5 (𝑁 ∈ ℤ → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
2827adantr 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
29 eqid 2621 . . . . . . . 8 0 = 0
3029biantrur 527 . . . . . . 7 (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0))
3130necon3abii 2836 . . . . . 6 (𝑁 ≠ 0 ↔ ¬ (0 = 0 ∧ 𝑁 = 0))
32 dvdslegcd 15157 . . . . . . . . 9 ((((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧ 𝑁 = 0)) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3332ex 450 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
348, 33mp3an2 1409 . . . . . . 7 (((abs‘𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3520, 34mpancom 702 . . . . . 6 (𝑁 ∈ ℤ → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3631, 35syl5bi 232 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ≠ 0 → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3736imp 445 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3828, 37mpd 15 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁))
3915zred 11433 . . . . 5 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℝ)
4020zred 11433 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4139, 40letri3d 10130 . . . 4 (𝑁 ∈ ℤ → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4241adantr 481 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4319, 38, 42mpbir2and 956 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁))
447, 43pm2.61dane 2877 1 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4618  ‘cfv 5852  (class class class)co 6610  0cc0 9887   ≤ cle 10026  ℕ0cn0 11243  ℤcz 11328  abscabs 13915   ∥ cdvds 14914   gcd cgcd 15147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148 This theorem is referenced by:  gcdid0  15172  nn0gcdsq  15391  dfphi2  15410  qqh0  29828
 Copyright terms: Public domain W3C validator