MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem1 Structured version   Visualization version   GIF version

Theorem gcdcllem1 15842
Description: Lemma for gcdn0cl 15845, gcddvds 15846 and dvdslegcd 15847. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypothesis
Ref Expression
gcdcllem1.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
Assertion
Ref Expression
gcdcllem1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦,𝑧   𝑥,𝑆
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑛)

Proof of Theorem gcdcllem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1z 12006 . . . . 5 1 ∈ ℤ
2 ssel 3960 . . . . . . 7 (𝐴 ⊆ ℤ → (𝑛𝐴𝑛 ∈ ℤ))
3 1dvds 15618 . . . . . . 7 (𝑛 ∈ ℤ → 1 ∥ 𝑛)
42, 3syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (𝑛𝐴 → 1 ∥ 𝑛))
54ralrimiv 3181 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑛𝐴 1 ∥ 𝑛)
6 breq1 5061 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑛 ↔ 1 ∥ 𝑛))
76ralbidv 3197 . . . . . . 7 (𝑧 = 1 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 1 ∥ 𝑛))
8 gcdcllem1.1 . . . . . . 7 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
97, 8elrab2 3682 . . . . . 6 (1 ∈ 𝑆 ↔ (1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛))
109biimpri 230 . . . . 5 ((1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆)
111, 5, 10sylancr 589 . . . 4 (𝐴 ⊆ ℤ → 1 ∈ 𝑆)
1211ne0d 4300 . . 3 (𝐴 ⊆ ℤ → 𝑆 ≠ ∅)
1312adantr 483 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅)
14 neeq1 3078 . . . 4 (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0))
1514cbvrexvw 3450 . . 3 (∃𝑛𝐴 𝑛 ≠ 0 ↔ ∃𝑤𝐴 𝑤 ≠ 0)
16 breq1 5061 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧𝑛𝑦𝑛))
1716ralbidv 3197 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 𝑦𝑛))
1817, 8elrab2 3682 . . . . . . . . . 10 (𝑦𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛𝐴 𝑦𝑛))
1918simprbi 499 . . . . . . . . 9 (𝑦𝑆 → ∀𝑛𝐴 𝑦𝑛)
2018simplbi 500 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ℤ)
21 ssel2 3961 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
22 dvdsleabs 15655 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦𝑛𝑦 ≤ (abs‘𝑛)))
23223expia 1117 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2421, 23sylan2 594 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛𝐴)) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2524anassrs 470 . . . . . . . . . . . . 13 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2625com23 86 . . . . . . . . . . . 12 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2726ralrimiva 3182 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2827ancoms 461 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2920, 28sylan2 594 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
30 r19.26 3170 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))))
31 pm3.35 801 . . . . . . . . . . 11 ((𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3231ralimi 3160 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3330, 32sylbir 237 . . . . . . . . 9 ((∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3419, 29, 33syl2an2 684 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3534ralrimiva 3182 . . . . . . 7 (𝐴 ⊆ ℤ → ∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
36 fveq2 6664 . . . . . . . . . . . 12 (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤))
3736breq2d 5070 . . . . . . . . . . 11 (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤)))
3814, 37imbi12d 347 . . . . . . . . . 10 (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))))
3938cbvralvw 3449 . . . . . . . . 9 (∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
4039ralbii 3165 . . . . . . . 8 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
41 ralcom 3354 . . . . . . . 8 (∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
42 r19.21v 3175 . . . . . . . . 9 (∀𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4342ralbii 3165 . . . . . . . 8 (∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4440, 41, 433bitri 299 . . . . . . 7 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4535, 44sylib 220 . . . . . 6 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
46 ssel2 3961 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
47 nn0abscl 14666 . . . . . . . . . . 11 (𝑤 ∈ ℤ → (abs‘𝑤) ∈ ℕ0)
4846, 47syl 17 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℕ0)
4948nn0zd 12079 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℤ)
50 breq2 5062 . . . . . . . . . . 11 (𝑥 = (abs‘𝑤) → (𝑦𝑥𝑦 ≤ (abs‘𝑤)))
5150ralbidv 3197 . . . . . . . . . 10 (𝑥 = (abs‘𝑤) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5251adantl 484 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝑤𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5349, 52rspcedv 3615 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (∀𝑦𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5453imim2d 57 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → ((𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5554ralimdva 3177 . . . . . 6 (𝐴 ⊆ ℤ → (∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5645, 55mpd 15 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
57 r19.23v 3279 . . . . 5 (∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ↔ (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5856, 57sylib 220 . . . 4 (𝐴 ⊆ ℤ → (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5958imp 409 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑤𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6015, 59sylan2b 595 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6113, 60jca 514 1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3935  c0 4290   class class class wbr 5058  cfv 6349  0cc0 10531  1c1 10532  cle 10670  0cn0 11891  cz 11975  abscabs 14587  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602
This theorem is referenced by:  gcdcllem3  15844
  Copyright terms: Public domain W3C validator