MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem3 Structured version   Visualization version   GIF version

Theorem gcdcllem3 15445
Description: Lemma for gcdn0cl 15446, gcddvds 15447 and dvdslegcd 15448. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Distinct variable groups:   𝑧,𝐾   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)   𝐾(𝑛)

Proof of Theorem gcdcllem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcllem2.2 . . . . 5 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
2 ssrab2 3828 . . . . 5 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} ⊆ ℤ
31, 2eqsstri 3776 . . . 4 𝑅 ⊆ ℤ
4 prssi 4498 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
54adantr 472 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → {𝑀, 𝑁} ⊆ ℤ)
6 neorian 3026 . . . . . . . 8 ((𝑀 ≠ 0 ∨ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))
7 prid1g 4439 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁})
8 neeq1 2994 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑛 ≠ 0 ↔ 𝑀 ≠ 0))
98rspcev 3449 . . . . . . . . . . 11 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
107, 9sylan 489 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1110adantlr 753 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
12 prid2g 4440 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁})
13 neeq1 2994 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ≠ 0 ↔ 𝑁 ≠ 0))
1413rspcev 3449 . . . . . . . . . . 11 ((𝑁 ∈ {𝑀, 𝑁} ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1512, 14sylan 489 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1615adantll 752 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1711, 16jaodan 861 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∨ 𝑁 ≠ 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
186, 17sylan2br 494 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
19 gcdcllem2.1 . . . . . . . 8 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
2019gcdcllem1 15443 . . . . . . 7 (({𝑀, 𝑁} ⊆ ℤ ∧ ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
215, 18, 20syl2anc 696 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2219, 1gcdcllem2 15444 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
23 neeq1 2994 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅))
24 raleq 3277 . . . . . . . . . 10 (𝑅 = 𝑆 → (∀𝑦𝑅 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝑥))
2524rexbidv 3190 . . . . . . . . 9 (𝑅 = 𝑆 → (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2623, 25anbi12d 749 . . . . . . . 8 (𝑅 = 𝑆 → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2722, 26syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2827adantr 472 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2921, 28mpbird 247 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥))
30 suprzcl2 11991 . . . . . 6 ((𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
313, 30mp3an1 1560 . . . . 5 ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
3229, 31syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ 𝑅)
333, 32sseldi 3742 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℤ)
343a1i 11 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑅 ⊆ ℤ)
3529simprd 482 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥)
36 1dvds 15218 . . . . . . 7 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
37 1dvds 15218 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3836, 37anim12i 591 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
39 1z 11619 . . . . . . 7 1 ∈ ℤ
40 breq1 4807 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑀 ↔ 1 ∥ 𝑀))
41 breq1 4807 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑁 ↔ 1 ∥ 𝑁))
4240, 41anbi12d 749 . . . . . . . 8 (𝑧 = 1 → ((𝑧𝑀𝑧𝑁) ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4342, 1elrab2 3507 . . . . . . 7 (1 ∈ 𝑅 ↔ (1 ∈ ℤ ∧ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4439, 43mpbiran 991 . . . . . 6 (1 ∈ 𝑅 ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
4538, 44sylibr 224 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑅)
4645adantr 472 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ∈ 𝑅)
47 suprzub 11992 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ∧ 1 ∈ 𝑅) → 1 ≤ sup(𝑅, ℝ, < ))
4834, 35, 46, 47syl3anc 1477 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ≤ sup(𝑅, ℝ, < ))
49 elnnz1 11615 . . 3 (sup(𝑅, ℝ, < ) ∈ ℕ ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ 1 ≤ sup(𝑅, ℝ, < )))
5033, 48, 49sylanbrc 701 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℕ)
51 breq1 4807 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑀 ↔ sup(𝑅, ℝ, < ) ∥ 𝑀))
52 breq1 4807 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑁 ↔ sup(𝑅, ℝ, < ) ∥ 𝑁))
5351, 52anbi12d 749 . . . . 5 (𝑥 = sup(𝑅, ℝ, < ) → ((𝑥𝑀𝑥𝑁) ↔ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
54 breq1 4807 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
55 breq1 4807 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
5654, 55anbi12d 749 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
5756cbvrabv 3339 . . . . . 6 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
581, 57eqtri 2782 . . . . 5 𝑅 = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
5953, 58elrab2 3507 . . . 4 (sup(𝑅, ℝ, < ) ∈ 𝑅 ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
6032, 59sylib 208 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
6160simprd 482 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁))
62 breq1 4807 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑀𝐾𝑀))
63 breq1 4807 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑁𝐾𝑁))
6462, 63anbi12d 749 . . . . . 6 (𝑧 = 𝐾 → ((𝑧𝑀𝑧𝑁) ↔ (𝐾𝑀𝐾𝑁)))
6564, 1elrab2 3507 . . . . 5 (𝐾𝑅 ↔ (𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)))
6665biimpri 218 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾𝑅)
67663impb 1108 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾𝑅)
68 suprzub 11992 . . . . 5 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥𝐾𝑅) → 𝐾 ≤ sup(𝑅, ℝ, < ))
69683expia 1115 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
703, 69mpan 708 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
7135, 67, 70syl2im 40 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))
7250, 61, 713jca 1123 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  wss 3715  c0 4058  {cpr 4323   class class class wbr 4804  supcsup 8513  cr 10147  0cc0 10148  1c1 10149   < clt 10286  cle 10287  cn 11232  cz 11589  cdvds 15202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203
This theorem is referenced by:  gcdn0cl  15446  gcddvds  15447  dvdslegcd  15448
  Copyright terms: Public domain W3C validator