MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch2 Structured version   Visualization version   GIF version

Theorem gch2 9494
Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch2 (GCH = V ↔ ran ℵ ⊆ GCH)

Proof of Theorem gch2
StepHypRef Expression
1 ssv 3623 . . 3 ran ℵ ⊆ V
2 sseq2 3625 . . 3 (GCH = V → (ran ℵ ⊆ GCH ↔ ran ℵ ⊆ V))
31, 2mpbiri 248 . 2 (GCH = V → ran ℵ ⊆ GCH)
4 cardidm 8782 . . . . . . . 8 (card‘(card‘𝑥)) = (card‘𝑥)
5 iscard3 8913 . . . . . . . 8 ((card‘(card‘𝑥)) = (card‘𝑥) ↔ (card‘𝑥) ∈ (ω ∪ ran ℵ))
64, 5mpbi 220 . . . . . . 7 (card‘𝑥) ∈ (ω ∪ ran ℵ)
7 elun 3751 . . . . . . 7 ((card‘𝑥) ∈ (ω ∪ ran ℵ) ↔ ((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ))
86, 7mpbi 220 . . . . . 6 ((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ)
9 fingch 9442 . . . . . . . . 9 Fin ⊆ GCH
10 nnfi 8150 . . . . . . . . 9 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ Fin)
119, 10sseldi 3599 . . . . . . . 8 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ GCH)
1211a1i 11 . . . . . . 7 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ GCH))
13 ssel 3595 . . . . . . 7 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ ran ℵ → (card‘𝑥) ∈ GCH))
1412, 13jaod 395 . . . . . 6 (ran ℵ ⊆ GCH → (((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ) → (card‘𝑥) ∈ GCH))
158, 14mpi 20 . . . . 5 (ran ℵ ⊆ GCH → (card‘𝑥) ∈ GCH)
16 vex 3201 . . . . . . 7 𝑥 ∈ V
17 alephon 8889 . . . . . . . . . . 11 (ℵ‘suc 𝑥) ∈ On
18 simpr 477 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
19 simpl 473 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → ran ℵ ⊆ GCH)
20 alephfnon 8885 . . . . . . . . . . . . . 14 ℵ Fn On
21 fnfvelrn 6354 . . . . . . . . . . . . . 14 ((ℵ Fn On ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ ran ℵ)
2220, 18, 21sylancr 695 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ ran ℵ)
2319, 22sseldd 3602 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ GCH)
24 suceloni 7010 . . . . . . . . . . . . . . 15 (𝑥 ∈ On → suc 𝑥 ∈ On)
2524adantl 482 . . . . . . . . . . . . . 14 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → suc 𝑥 ∈ On)
26 fnfvelrn 6354 . . . . . . . . . . . . . 14 ((ℵ Fn On ∧ suc 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ ran ℵ)
2720, 25, 26sylancr 695 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ ran ℵ)
2819, 27sseldd 3602 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ GCH)
29 gchaleph2 9491 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ GCH ∧ (ℵ‘suc 𝑥) ∈ GCH) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
3018, 23, 28, 29syl3anc 1325 . . . . . . . . . . 11 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
31 isnumi 8769 . . . . . . . . . . 11 (((ℵ‘suc 𝑥) ∈ On ∧ (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥)) → 𝒫 (ℵ‘𝑥) ∈ dom card)
3217, 30, 31sylancr 695 . . . . . . . . . 10 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → 𝒫 (ℵ‘𝑥) ∈ dom card)
3332ralrimiva 2965 . . . . . . . . 9 (ran ℵ ⊆ GCH → ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card)
34 dfac12 8968 . . . . . . . . 9 (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card)
3533, 34sylibr 224 . . . . . . . 8 (ran ℵ ⊆ GCH → CHOICE)
36 dfac10 8956 . . . . . . . 8 (CHOICE ↔ dom card = V)
3735, 36sylib 208 . . . . . . 7 (ran ℵ ⊆ GCH → dom card = V)
3816, 37syl5eleqr 2707 . . . . . 6 (ran ℵ ⊆ GCH → 𝑥 ∈ dom card)
39 cardid2 8776 . . . . . 6 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
40 engch 9447 . . . . . 6 ((card‘𝑥) ≈ 𝑥 → ((card‘𝑥) ∈ GCH ↔ 𝑥 ∈ GCH))
4138, 39, 403syl 18 . . . . 5 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ GCH ↔ 𝑥 ∈ GCH))
4215, 41mpbid 222 . . . 4 (ran ℵ ⊆ GCH → 𝑥 ∈ GCH)
4316a1i 11 . . . 4 (ran ℵ ⊆ GCH → 𝑥 ∈ V)
4442, 432thd 255 . . 3 (ran ℵ ⊆ GCH → (𝑥 ∈ GCH ↔ 𝑥 ∈ V))
4544eqrdv 2619 . 2 (ran ℵ ⊆ GCH → GCH = V)
463, 45impbii 199 1 (GCH = V ↔ ran ℵ ⊆ GCH)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1482  wcel 1989  wral 2911  Vcvv 3198  cun 3570  wss 3572  𝒫 cpw 4156   class class class wbr 4651  dom cdm 5112  ran crn 5113  Oncon0 5721  suc csuc 5723   Fn wfn 5881  cfv 5886  ωcom 7062  cen 7949  Fincfn 7952  cardccrd 8758  cale 8759  CHOICEwac 8935  GCHcgch 9439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-reg 8494  ax-inf2 8535
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-seqom 7540  df-1o 7557  df-2o 7558  df-oadd 7561  df-omul 7562  df-oexp 7563  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-oi 8412  df-har 8460  df-wdom 8461  df-cnf 8556  df-r1 8624  df-rank 8625  df-card 8762  df-aleph 8763  df-ac 8936  df-cda 8987  df-fin4 9106  df-gch 9440
This theorem is referenced by:  gch3  9495
  Copyright terms: Public domain W3C validator