MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 9396
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 9448. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 7928 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 150 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 7906 . . . . . . 7 Rel ≼
43brrelexi 5123 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1082 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 8765 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 488 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7syl5ibr 236 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 393 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1059 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 477 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 cdadom3 8955 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1410, 5, 13syl2anc 692 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1514adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
16 cdalepw 8963 . . . . . 6 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
17163adant1 1077 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
1817adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
19 gchor 9394 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 1324 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
21 cdadom3 8955 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
225, 10, 21syl2anc 692 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
23 cdacomen 8948 . . . . . . . 8 (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)
24 domentr 7960 . . . . . . . 8 ((𝐵 ≼ (𝐵 +𝑐 𝐴) ∧ (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
2522, 23, 24sylancl 693 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
26 domen2 8048 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 𝐵) → (𝐵𝐴𝐵 ≼ (𝐴 +𝑐 𝐵)))
2725, 26syl5ibrcom 237 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴 +𝑐 𝐵) → 𝐵𝐴))
2827imp 445 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → 𝐵𝐴)
2928olcd 408 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → (𝐴𝐵𝐵𝐴))
30 simpl1 1062 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
31 canth2g 8059 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
32 sdomdom 7928 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3330, 31, 323syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
34 simpl2 1063 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
35 pwen 8078 . . . . . . . . 9 ((𝐴 +𝑐 𝐴) ≈ 𝐴 → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
3634, 35syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
37 enen2 8046 . . . . . . . . 9 ((𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3837adantl 482 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3936, 38mpbird 247 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵))
40 endom 7927 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) → 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵))
41 pwcdadom 8983 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵)
4239, 40, 413syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
43 domtr 7954 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4433, 42, 43syl2anc 692 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4544orcd 407 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4629, 45jaodan 825 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4720, 46syldan 487 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
489, 47pm2.61dan 831 1 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036  wcel 1992  Vcvv 3191  𝒫 cpw 4135   class class class wbr 4618  (class class class)co 6605  cen 7897  cdom 7898  csdm 7899  Fincfn 7900   +𝑐 ccda 8934  GCHcgch 9387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-1o 7506  df-2o 7507  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-wdom 8409  df-card 8710  df-cda 8935  df-gch 9388
This theorem is referenced by:  gchaclem  9445
  Copyright terms: Public domain W3C validator