MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   GIF version

Theorem gchina 9506
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina (GCH = V → Inaccw = Inacc)

Proof of Theorem gchina
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inaccw)
2 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅))
3 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥))
4 pwfi 8246 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
5 isfinite 8534 . . . . . . . . . . . . . 14 (𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω)
6 winainf 9501 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ω ⊆ 𝑥)
7 ssdomg 7986 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → (ω ⊆ 𝑥 → ω ≼ 𝑥))
86, 7mpd 15 . . . . . . . . . . . . . . 15 (𝑥 ∈ Inaccw → ω ≼ 𝑥)
9 sdomdomtr 8078 . . . . . . . . . . . . . . . 16 ((𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦𝑥)
109expcom 451 . . . . . . . . . . . . . . 15 (ω ≼ 𝑥 → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
118, 10syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ Inaccw → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
125, 11syl5bi 232 . . . . . . . . . . . . 13 (𝑥 ∈ Inaccw → (𝒫 𝑦 ∈ Fin → 𝒫 𝑦𝑥))
134, 12syl5bi 232 . . . . . . . . . . . 12 (𝑥 ∈ Inaccw → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1413ad3antlr 766 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1514a1dd 50 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
16 vex 3198 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 simplll 797 . . . . . . . . . . . . . . 15 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH = V)
1816, 17syl5eleqr 2706 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH)
19 simprr 795 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin)
20 gchinf 9464 . . . . . . . . . . . . . 14 ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω ≼ 𝑦)
2118, 19, 20syl2anc 692 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦)
22 vex 3198 . . . . . . . . . . . . . 14 𝑧 ∈ V
2322, 17syl5eleqr 2706 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH)
24 gchpwdom 9477 . . . . . . . . . . . . 13 ((ω ≼ 𝑦𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
2521, 18, 23, 24syl3anc 1324 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
26 winacard 9499 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Inaccw → (card‘𝑥) = 𝑥)
27 iscard 8786 . . . . . . . . . . . . . . . . . 18 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧𝑥 𝑧𝑥))
2827simprbi 480 . . . . . . . . . . . . . . . . 17 ((card‘𝑥) = 𝑥 → ∀𝑧𝑥 𝑧𝑥)
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ∀𝑧𝑥 𝑧𝑥)
3029ad2antlr 762 . . . . . . . . . . . . . . 15 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → ∀𝑧𝑥 𝑧𝑥)
3130r19.21bi 2929 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → 𝑧𝑥)
32 domsdomtr 8080 . . . . . . . . . . . . . . 15 ((𝒫 𝑦𝑧𝑧𝑥) → 𝒫 𝑦𝑥)
3332expcom 451 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3431, 33syl 17 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3534adantrr 752 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3625, 35sylbid 230 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3736expr 642 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (¬ 𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
3815, 37pm2.61d 170 . . . . . . . . 9 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3938rexlimdva 3027 . . . . . . . 8 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → (∃𝑧𝑥 𝑦𝑧 → 𝒫 𝑦𝑥))
4039ralimdva 2959 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (∀𝑦𝑥𝑧𝑥 𝑦𝑧 → ∀𝑦𝑥 𝒫 𝑦𝑥))
412, 3, 403anim123d 1404 . . . . . 6 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)))
42 elwina 9493 . . . . . 6 (𝑥 ∈ Inaccw ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧))
43 elina 9494 . . . . . 6 (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥))
4441, 42, 433imtr4g 285 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
451, 44mpd 15 . . . 4 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inacc)
4645ex 450 . . 3 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
47 inawina 9497 . . 3 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
4846, 47impbid1 215 . 2 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
4948eqrdv 2618 1 (GCH = V → Inaccw = Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  Vcvv 3195  wss 3567  c0 3907  𝒫 cpw 4149   class class class wbr 4644  Oncon0 5711  cfv 5876  ωcom 7050  cdom 7938  csdm 7939  Fincfn 7940  cardccrd 8746  cfccf 8748  GCHcgch 9427  Inaccwcwina 9489  Inacccina 9490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-seqom 7528  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-oexp 7551  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-oi 8400  df-har 8448  df-wdom 8449  df-cnf 8544  df-card 8750  df-cf 8752  df-cda 8975  df-fin4 9094  df-gch 9428  df-wina 9491  df-ina 9492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator