![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchor | Structured version Visualization version GIF version |
Description: If 𝐴 ≤ 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchor | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 813 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴) | |
2 | brdom2 8139 | . . 3 ⊢ (𝐵 ≼ 𝒫 𝐴 ↔ (𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴)) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴)) |
4 | gchen1 9610 | . . . . 5 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) | |
5 | 4 | expr 644 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴 ≼ 𝐵) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵)) |
6 | 5 | adantrr 755 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵)) |
7 | 6 | orim1d 920 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → ((𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴))) |
8 | 3, 7 | mpd 15 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 ∈ wcel 2127 𝒫 cpw 4290 class class class wbr 4792 ≈ cen 8106 ≼ cdom 8107 ≺ csdm 8108 Fincfn 8109 GCHcgch 9605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 df-rel 5261 df-f1o 6044 df-en 8110 df-dom 8111 df-sdom 8112 df-gch 9606 |
This theorem is referenced by: gchdomtri 9614 gchpwdom 9655 |
Copyright terms: Public domain | W3C validator |