MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   GIF version

Theorem gchxpidm 10079
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 5202 . . . . . . . 8 ∅ ∈ V
21a1i 11 . . . . . . 7 𝐴 ∈ Fin → ∅ ∈ V)
3 xpsneng 8590 . . . . . . 7 ((𝐴 ∈ GCH ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
42, 3sylan2 592 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≈ 𝐴)
54ensymd 8548 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × {∅}))
6 df1o2 8105 . . . . . . 7 1o = {∅}
7 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
8 0fin 8734 . . . . . . . . . . . 12 ∅ ∈ Fin
97, 8syl6eqel 2918 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
109necon3bi 3039 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
1110adantl 482 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 0sdomg 8634 . . . . . . . . . 10 (𝐴 ∈ GCH → (∅ ≺ 𝐴𝐴 ≠ ∅))
1312adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1411, 13mpbird 258 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ∅ ≺ 𝐴)
15 0sdom1dom 8704 . . . . . . . 8 (∅ ≺ 𝐴 ↔ 1o𝐴)
1614, 15sylib 219 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
176, 16eqbrtrrid 5093 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → {∅} ≼ 𝐴)
18 xpdom2g 8601 . . . . . 6 ((𝐴 ∈ GCH ∧ {∅} ≼ 𝐴) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
20 endomtr 8555 . . . . 5 ((𝐴 ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
215, 19, 20syl2anc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 × 𝐴))
22 canth2g 8659 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
2322adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
24 sdomdom 8525 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
26 xpdom1g 8602 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
2725, 26syldan 591 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
28 pwexg 5270 . . . . . . . . 9 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
2928adantr 481 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
30 xpdom2g 8601 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3129, 25, 30syl2anc 584 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
32 domtr 8550 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴) ∧ (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴)) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3327, 31, 32syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
34 simpl 483 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
35 pwdjuen 9595 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3634, 35syldan 591 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3736ensymd 8548 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴))
38 gchdjuidm 10078 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
39 pwen 8678 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
4038, 39syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
41 entr 8549 . . . . . . 7 (((𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴) ∧ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
4237, 40, 41syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
43 domentr 8556 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴) ∧ (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
4433, 42, 43syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
45 gchinf 10067 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
46 pwxpndom 10076 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
4745, 46syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
48 ensym 8546 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 × 𝐴))
49 endom 8524 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5048, 49syl 17 . . . . . 6 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5147, 50nsyl 142 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴)
52 brsdom 8520 . . . . 5 ((𝐴 × 𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴 × 𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴))
5344, 51, 52sylanbrc 583 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≺ 𝒫 𝐴)
5421, 53jca 512 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴))
55 gchen1 10035 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 × 𝐴))
5654, 55mpdan 683 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × 𝐴))
5756ensymd 8548 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  c0 4288  𝒫 cpw 4535  {csn 4557   class class class wbr 5057   × cxp 5546  ωcom 7569  1oc1o 8084  cen 8494  cdom 8495  csdm 8496  Fincfn 8497  cdju 9315  GCHcgch 10030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-seqom 8073  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-oexp 8097  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-har 9010  df-cnf 9113  df-dju 9318  df-card 9356  df-fin4 9697  df-gch 10031
This theorem is referenced by:  gchhar  10089
  Copyright terms: Public domain W3C validator