Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen21nv Structured version   Visualization version   GIF version

Theorem gen21nv 38362
Description: Virtual deduction form of alrimdh 1787. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
gen21nv.1 (𝜑 → ∀𝑥𝜑)
gen21nv.2 (𝜓 → ∀𝑥𝜓)
gen21nv.3 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
gen21nv (   𝜑   ,   𝜓   ▶   𝑥𝜒   )

Proof of Theorem gen21nv
StepHypRef Expression
1 gen21nv.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 gen21nv.2 . . 3 (𝜓 → ∀𝑥𝜓)
3 gen21nv.3 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
43dfvd2i 38318 . . 3 (𝜑 → (𝜓𝜒))
51, 2, 4alrimdh 1787 . 2 (𝜑 → (𝜓 → ∀𝑥𝜒))
65dfvd2ir 38319 1 (   𝜑   ,   𝜓   ▶   𝑥𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  (   wvd2 38310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-an 386  df-vd2 38311
This theorem is referenced by:  ssralv2VD  38620
  Copyright terms: Public domain W3C validator