MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcd Structured version   Visualization version   GIF version

Theorem genpcd 10016
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcd.2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcd ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcd
StepHypRef Expression
1 ltrelnq 9936 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 5321 . . . . . 6 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
32simpld 477 . . . . 5 (𝑥 <Q 𝑓𝑥Q)
4 genp.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
5 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelv 10010 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
76adantr 472 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
8 breq2 4804 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
98biimpd 219 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
10 genpcd.2 . . . . . . . . . . . 12 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
119, 10sylan9r 693 . . . . . . . . . . 11 (((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))
1211exp31 631 . . . . . . . . . 10 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1312an4s 904 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔𝐴𝐵)) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1413impancom 455 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1514rexlimdvv 3171 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
167, 15sylbid 230 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1716ex 449 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
183, 17syl5 34 . . . 4 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)))))
1918com34 91 . . 3 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵)))))
2019pm2.43d 53 . 2 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑥 ∈ (𝐴𝐹𝐵))))
2120com23 86 1 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  {cab 2742  wrex 3047   class class class wbr 4800  (class class class)co 6809  cmpt2 6811  Qcnq 9862   <Q cltq 9868  Pcnp 9869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-ni 9882  df-nq 9922  df-ltnq 9928  df-np 9991
This theorem is referenced by:  genpcl  10018
  Copyright terms: Public domain W3C validator