MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpv Structured version   Visualization version   GIF version

Theorem genpv 9765
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpv ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpv
StepHypRef Expression
1 oveq1 6611 . . . 4 (𝑓 = 𝐴 → (𝑓𝐹𝑔) = (𝐴𝐹𝑔))
2 rexeq 3128 . . . . 5 (𝑓 = 𝐴 → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
32abbidv 2738 . . . 4 (𝑓 = 𝐴 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
41, 3eqeq12d 2636 . . 3 (𝑓 = 𝐴 → ((𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)}))
5 oveq2 6612 . . . 4 (𝑔 = 𝐵 → (𝐴𝐹𝑔) = (𝐴𝐹𝐵))
6 rexeq 3128 . . . . . 6 (𝑔 = 𝐵 → (∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
76rexbidv 3045 . . . . 5 (𝑔 = 𝐵 → (∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
87abbidv 2738 . . . 4 (𝑔 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
95, 8eqeq12d 2636 . . 3 (𝑔 = 𝐵 → ((𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)}))
10 elprnq 9757 . . . . . . . . 9 ((𝑓P𝑦𝑓) → 𝑦Q)
11 elprnq 9757 . . . . . . . . 9 ((𝑔P𝑧𝑔) → 𝑧Q)
12 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
13 eleq1 2686 . . . . . . . . . 10 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
1412, 13syl5ibrcom 237 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1510, 11, 14syl2an 494 . . . . . . . 8 (((𝑓P𝑦𝑓) ∧ (𝑔P𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1615an4s 868 . . . . . . 7 (((𝑓P𝑔P) ∧ (𝑦𝑓𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1716rexlimdvva 3031 . . . . . 6 ((𝑓P𝑔P) → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1817abssdv 3655 . . . . 5 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
19 nqex 9689 . . . . 5 Q ∈ V
20 ssexg 4764 . . . . 5 (({𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
2118, 19, 20sylancl 693 . . . 4 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
22 rexeq 3128 . . . . . 6 (𝑤 = 𝑓 → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)))
2322abbidv 2738 . . . . 5 (𝑤 = 𝑓 → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
24 rexeq 3128 . . . . . . 7 (𝑣 = 𝑔 → (∃𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2524rexbidv 3045 . . . . . 6 (𝑣 = 𝑔 → (∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2625abbidv 2738 . . . . 5 (𝑣 = 𝑔 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
27 genp.1 . . . . 5 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2823, 26, 27ovmpt2g 6748 . . . 4 ((𝑓P𝑔P ∧ {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
2921, 28mpd3an3 1422 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
304, 9, 29vtocl2ga 3260 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
31 eqeq1 2625 . . . . 5 (𝑥 = 𝑓 → (𝑥 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑦𝐺𝑧)))
32312rexbidv 3050 . . . 4 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧)))
33 oveq1 6611 . . . . . 6 (𝑦 = 𝑔 → (𝑦𝐺𝑧) = (𝑔𝐺𝑧))
3433eqeq2d 2631 . . . . 5 (𝑦 = 𝑔 → (𝑓 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑔𝐺𝑧)))
35 oveq2 6612 . . . . . 6 (𝑧 = → (𝑔𝐺𝑧) = (𝑔𝐺))
3635eqeq2d 2631 . . . . 5 (𝑧 = → (𝑓 = (𝑔𝐺𝑧) ↔ 𝑓 = (𝑔𝐺)))
3734, 36cbvrex2v 3168 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺))
3832, 37syl6bb 276 . . 3 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
3938cbvabv 2744 . 2 {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)} = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}
4030, 39syl6eq 2671 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  wrex 2908  Vcvv 3186  wss 3555  (class class class)co 6604  cmpt2 6606  Qcnq 9618  Pcnp 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-ni 9638  df-nq 9678  df-np 9747
This theorem is referenced by:  genpelv  9766  plpv  9776  mpv  9777
  Copyright terms: Public domain W3C validator