MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpv Structured version   Visualization version   GIF version

Theorem genpv 10415
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpv ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpv
StepHypRef Expression
1 oveq1 7157 . . . 4 (𝑓 = 𝐴 → (𝑓𝐹𝑔) = (𝐴𝐹𝑔))
2 rexeq 3406 . . . . 5 (𝑓 = 𝐴 → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
32abbidv 2885 . . . 4 (𝑓 = 𝐴 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
41, 3eqeq12d 2837 . . 3 (𝑓 = 𝐴 → ((𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)}))
5 oveq2 7158 . . . 4 (𝑔 = 𝐵 → (𝐴𝐹𝑔) = (𝐴𝐹𝐵))
6 rexeq 3406 . . . . . 6 (𝑔 = 𝐵 → (∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
76rexbidv 3297 . . . . 5 (𝑔 = 𝐵 → (∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
87abbidv 2885 . . . 4 (𝑔 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
95, 8eqeq12d 2837 . . 3 (𝑔 = 𝐵 → ((𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)}))
10 elprnq 10407 . . . . . . . . 9 ((𝑓P𝑦𝑓) → 𝑦Q)
11 elprnq 10407 . . . . . . . . 9 ((𝑔P𝑧𝑔) → 𝑧Q)
12 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
13 eleq1 2900 . . . . . . . . . 10 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
1412, 13syl5ibrcom 249 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1510, 11, 14syl2an 597 . . . . . . . 8 (((𝑓P𝑦𝑓) ∧ (𝑔P𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1615an4s 658 . . . . . . 7 (((𝑓P𝑔P) ∧ (𝑦𝑓𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1716rexlimdvva 3294 . . . . . 6 ((𝑓P𝑔P) → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1817abssdv 4044 . . . . 5 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
19 nqex 10339 . . . . 5 Q ∈ V
20 ssexg 5219 . . . . 5 (({𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
2118, 19, 20sylancl 588 . . . 4 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
22 rexeq 3406 . . . . . 6 (𝑤 = 𝑓 → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)))
2322abbidv 2885 . . . . 5 (𝑤 = 𝑓 → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
24 rexeq 3406 . . . . . . 7 (𝑣 = 𝑔 → (∃𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2524rexbidv 3297 . . . . . 6 (𝑣 = 𝑔 → (∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2625abbidv 2885 . . . . 5 (𝑣 = 𝑔 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
27 genp.1 . . . . 5 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2823, 26, 27ovmpog 7303 . . . 4 ((𝑓P𝑔P ∧ {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
2921, 28mpd3an3 1458 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
304, 9, 29vtocl2ga 3574 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
31 eqeq1 2825 . . . . 5 (𝑥 = 𝑓 → (𝑥 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑦𝐺𝑧)))
32312rexbidv 3300 . . . 4 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧)))
33 oveq1 7157 . . . . . 6 (𝑦 = 𝑔 → (𝑦𝐺𝑧) = (𝑔𝐺𝑧))
3433eqeq2d 2832 . . . . 5 (𝑦 = 𝑔 → (𝑓 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑔𝐺𝑧)))
35 oveq2 7158 . . . . . 6 (𝑧 = → (𝑔𝐺𝑧) = (𝑔𝐺))
3635eqeq2d 2832 . . . . 5 (𝑧 = → (𝑓 = (𝑔𝐺𝑧) ↔ 𝑓 = (𝑔𝐺)))
3734, 36cbvrex2vw 3462 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺))
3832, 37syl6bb 289 . . 3 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
3938cbvabv 2889 . 2 {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)} = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}
4030, 39syl6eq 2872 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  Vcvv 3494  wss 3935  (class class class)co 7150  cmpo 7152  Qcnq 10268  Pcnp 10275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-ni 10288  df-nq 10328  df-np 10397
This theorem is referenced by:  genpelv  10416  plpv  10426  mpv  10427
  Copyright terms: Public domain W3C validator