MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geomulcvg Structured version   Visualization version   GIF version

Theorem geomulcvg 14551
Description: The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypothesis
Ref Expression
geomulcvg.1 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
Assertion
Ref Expression
geomulcvg ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geomulcvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 geomulcvg.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
2 elnn0 11254 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3 simpr 477 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐴 = 0)
43oveq1d 6630 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
5 0exp 12851 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
64, 5sylan9eq 2675 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
76oveq2d 6631 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = (𝑘 · 0))
8 nncn 10988 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
98adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
109mul01d 10195 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · 0) = 0)
117, 10eqtrd 2655 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = 0)
12 simpr 477 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 = 0)
1312oveq1d 6630 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = (0 · (𝐴𝑘)))
14 simplll 797 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝐴 ∈ ℂ)
15 0nn0 11267 . . . . . . . . . . . . . 14 0 ∈ ℕ0
1612, 15syl6eqel 2706 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
1714, 16expcld 12964 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝐴𝑘) ∈ ℂ)
1817mul02d 10194 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (0 · (𝐴𝑘)) = 0)
1913, 18eqtrd 2655 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = 0)
2011, 19jaodan 825 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝑘 · (𝐴𝑘)) = 0)
212, 20sylan2b 492 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ0) → (𝑘 · (𝐴𝑘)) = 0)
2221mpteq2dva 4714 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ 0))
231, 22syl5eq 2667 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = (𝑘 ∈ ℕ0 ↦ 0))
24 fconstmpt 5133 . . . . . . 7 (ℕ0 × {0}) = (𝑘 ∈ ℕ0 ↦ 0)
25 nn0uz 11682 . . . . . . . 8 0 = (ℤ‘0)
2625xpeq1i 5105 . . . . . . 7 (ℕ0 × {0}) = ((ℤ‘0) × {0})
2724, 26eqtr3i 2645 . . . . . 6 (𝑘 ∈ ℕ0 ↦ 0) = ((ℤ‘0) × {0})
2823, 27syl6eq 2671 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = ((ℤ‘0) × {0}))
2928seqeq3d 12765 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) = seq0( + , ((ℤ‘0) × {0})))
30 0z 11348 . . . . 5 0 ∈ ℤ
31 serclim0 14258 . . . . 5 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
3230, 31ax-mp 5 . . . 4 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
3329, 32syl6eqbr 4662 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ⇝ 0)
34 seqex 12759 . . . 4 seq0( + , 𝐹) ∈ V
35 c0ex 9994 . . . 4 0 ∈ V
3634, 35breldm 5299 . . 3 (seq0( + , 𝐹) ⇝ 0 → seq0( + , 𝐹) ∈ dom ⇝ )
3733, 36syl 17 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ∈ dom ⇝ )
38 1red 10015 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 ∈ ℝ)
39 abscl 13968 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4039adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
41 peano2re 10169 . . . . . . . 8 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) + 1) ∈ ℝ)
4342rehalfcld 11239 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
4443adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
45 absrpcl 13978 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4645adantlr 750 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4744, 46rerpdivcld 11863 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ)
4840recnd 10028 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
4948mulid2d 10018 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
50 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
51 1re 9999 . . . . . . . . 9 1 ∈ ℝ
52 avglt1 11230 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5340, 51, 52sylancl 693 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5450, 53mpbid 222 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < (((abs‘𝐴) + 1) / 2))
5549, 54eqbrtrd 4645 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5655adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5738, 44, 46ltmuldivd 11879 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2) ↔ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))))
5856, 57mpbid 222 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)))
59 expmulnbnd 12952 . . . 4 ((1 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ ∧ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
6038, 47, 58, 59syl3anc 1323 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
61 eluznn0 11717 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ0)
62 nn0cn 11262 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6362adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6463mulid2d 10018 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (1 · 𝑘) = 𝑘)
6543recnd 10028 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6665ad2antrr 761 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6748ad2antrr 761 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
6846adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
6968rpne0d 11837 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ≠ 0)
70 simpr 477 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7166, 67, 69, 70expdivd 12978 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) = (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘)))
7264, 71breq12d 4636 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
73 nn0re 11261 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7473adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
75 reexpcl 12833 . . . . . . . . . . 11 (((((abs‘𝐴) + 1) / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7644, 75sylan 488 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7740adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
78 reexpcl 12833 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
7977, 78sylan 488 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
8077adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
81 nn0z 11360 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8281adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8368rpgt0d 11835 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < (abs‘𝐴))
84 expgt0 12849 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (abs‘𝐴)) → 0 < ((abs‘𝐴)↑𝑘))
8580, 82, 83, 84syl3anc 1323 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < ((abs‘𝐴)↑𝑘))
86 ltmuldiv 10856 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ ∧ (((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 < ((abs‘𝐴)↑𝑘))) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8774, 76, 79, 85, 86syl112anc 1327 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8872, 87bitr4d 271 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
8961, 88sylan2 491 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ (𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛))) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9089anassrs 679 . . . . . 6 (((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9190ralbidva 2981 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
92 simprl 793 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 𝑛 ∈ ℕ0)
93 oveq2 6623 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
94 eqid 2621 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))
95 ovex 6643 . . . . . . . . . . 11 ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ V
9693, 94, 95fvmpt 6249 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9796adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9843ad2antrr 761 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
99 simpr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10098, 99reexpcld 12981 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
10197, 100eqeltrd 2698 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) ∈ ℝ)
102 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑘 = 𝑚)
103 oveq2 6623 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
104102, 103oveq12d 6633 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 · (𝐴𝑘)) = (𝑚 · (𝐴𝑚)))
105 ovex 6643 . . . . . . . . . . 11 (𝑚 · (𝐴𝑚)) ∈ V
106104, 1, 105fvmpt 6249 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
107106adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
108 nn0cn 11262 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
109108adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
110 simpll 789 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 𝐴 ∈ ℂ)
111 expcl 12834 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
112110, 111sylan 488 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
113109, 112mulcld 10020 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝑚 · (𝐴𝑚)) ∈ ℂ)
114107, 113eqeltrd 2698 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
115 0red 10001 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℝ)
116 absge0 13977 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
117116adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
118115, 40, 43, 117, 54lelttrd 10155 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 < (((abs‘𝐴) + 1) / 2))
119115, 43, 118ltled 10145 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (((abs‘𝐴) + 1) / 2))
12043, 119absidd 14111 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) = (((abs‘𝐴) + 1) / 2))
121 avglt2 11231 . . . . . . . . . . . . . 14 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12240, 51, 121sylancl 693 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12350, 122mpbid 222 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) < 1)
124120, 123eqbrtrd 4645 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) < 1)
125 oveq2 6623 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
126 ovex 6643 . . . . . . . . . . . . 13 ((((abs‘𝐴) + 1) / 2)↑𝑛) ∈ V
127125, 94, 126fvmpt 6249 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
128127adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
12965, 124, 128geolim 14545 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))))
130 seqex 12759 . . . . . . . . . . 11 seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ V
131 ovex 6643 . . . . . . . . . . 11 (1 / (1 − (((abs‘𝐴) + 1) / 2))) ∈ V
132130, 131breldm 5299 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
133129, 132syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
134133adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
135 1red 10015 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 1 ∈ ℝ)
136 eluznn0 11717 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
13792, 136sylan 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
138137nn0red 11312 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
139 simplll 797 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℂ)
140139abscld 14125 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
141140, 137reexpcld 12981 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴)↑𝑚) ∈ ℝ)
142138, 141remulcld 10030 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ∈ ℝ)
143137, 100syldan 487 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
144 simprr 795 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))
145 oveq2 6623 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((abs‘𝐴)↑𝑘) = ((abs‘𝐴)↑𝑚))
146102, 145oveq12d 6633 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 · ((abs‘𝐴)↑𝑘)) = (𝑚 · ((abs‘𝐴)↑𝑚)))
147146, 93breq12d 4636 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚)))
148147rspccva 3298 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
149144, 148sylan 488 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
150142, 143, 149ltled 10145 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ≤ ((((abs‘𝐴) + 1) / 2)↑𝑚))
151137nn0cnd 11313 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℂ)
152139, 137expcld 12964 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐴𝑚) ∈ ℂ)
153151, 152absmuld 14143 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = ((abs‘𝑚) · (abs‘(𝐴𝑚))))
154137nn0ge0d 11314 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 0 ≤ 𝑚)
155138, 154absidd 14111 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝑚) = 𝑚)
156139, 137absexpd 14141 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐴𝑚)) = ((abs‘𝐴)↑𝑚))
157155, 156oveq12d 6633 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝑚) · (abs‘(𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
158153, 157eqtrd 2655 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
159143recnd 10028 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℂ)
160159mulid2d 10018 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
161150, 158, 1603brtr4d 4655 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) ≤ (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
162137, 106syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
163162fveq2d 6162 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) = (abs‘(𝑚 · (𝐴𝑚))))
164137, 96syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
165164oveq2d 6631 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)) = (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
166161, 163, 1653brtr4d 4655 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) ≤ (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)))
16725, 92, 101, 114, 134, 135, 166cvgcmpce 14496 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , 𝐹) ∈ dom ⇝ )
168167expr 642 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
169168adantlr 750 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
17091, 169sylbid 230 . . . 4 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
171170rexlimdva 3026 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
17260, 171mpd 15 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → seq0( + , 𝐹) ∈ dom ⇝ )
17337, 172pm2.61dane 2877 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  {csn 4155   class class class wbr 4623  cmpt 4683   × cxp 5082  dom cdm 5084  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cle 10035  cmin 10226   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  +crp 11792  seqcseq 12757  cexp 12816  abscabs 13924  cli 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-ico 12139  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367
This theorem is referenced by:  radcnvlem1  24105
  Copyright terms: Public domain W3C validator