MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem1 Structured version   Visualization version   GIF version

Theorem gexlem1 18633
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexval.1 𝑋 = (Base‘𝐺)
gexval.2 · = (.g𝐺)
gexval.3 0 = (0g𝐺)
gexval.4 𝐸 = (gEx‘𝐺)
gexval.i 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
Assertion
Ref Expression
gexlem1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥, · ,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem gexlem1
StepHypRef Expression
1 gexval.1 . . 3 𝑋 = (Base‘𝐺)
2 gexval.2 . . 3 · = (.g𝐺)
3 gexval.3 . . 3 0 = (0g𝐺)
4 gexval.4 . . 3 𝐸 = (gEx‘𝐺)
5 gexval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
61, 2, 3, 4, 5gexval 18632 . 2 (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2830 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 343 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
9 eqeq2 2830 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 343 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
11 orc 861 . . . . 5 ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
1211expcom 414 . . . 4 (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
1312adantl 482 . . 3 ((𝐺𝑉𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
14 ssrab2 4053 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
15 nnuz 12269 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2827 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 4007 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 neqne 3021 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
1918adantl 482 . . . . . 6 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
20 infssuzcl 12320 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2117, 19, 20sylancr 587 . . . . 5 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
22 eleq1a 2905 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
2321, 22syl 17 . . . 4 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
24 olc 862 . . . 4 (𝐸𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
2523, 24syl6 35 . . 3 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
268, 10, 13, 25ifbothda 4500 . 2 (𝐺𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
276, 26mpd 15 1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  wral 3135  {crab 3139  wss 3933  c0 4288  ifcif 4463  cfv 6348  (class class class)co 7145  infcinf 8893  cr 10524  0cc0 10525  1c1 10526   < clt 10663  cn 11626  cuz 12231  Basecbs 16471  0gc0g 16701  .gcmg 18162  gExcgex 18582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-gex 18586
This theorem is referenced by:  gexcl  18634  gexid  18635  gexdvds  18638
  Copyright terms: Public domain W3C validator