Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmpropd Structured version   Visualization version   GIF version

Theorem ghmpropd 17619
 Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a (𝜑𝐵 = (Base‘𝐽))
ghmpropd.b (𝜑𝐶 = (Base‘𝐾))
ghmpropd.c (𝜑𝐵 = (Base‘𝐿))
ghmpropd.d (𝜑𝐶 = (Base‘𝑀))
ghmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
ghmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
ghmpropd (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ghmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 ghmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 ghmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 17358 . . . . 5 (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp))
5 ghmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
6 ghmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
7 ghmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
85, 6, 7grppropd 17358 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp))
94, 8anbi12d 746 . . . 4 (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)))
101, 5, 2, 6, 3, 7mhmpropd 17262 . . . . 5 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
1110eleq2d 2684 . . . 4 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
129, 11anbi12d 746 . . 3 (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))))
13 ghmgrp1 17583 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp)
14 ghmgrp2 17584 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp)
1513, 14jca 554 . . . 4 (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp))
16 ghmmhmb 17592 . . . . 5 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾))
1716eleq2d 2684 . . . 4 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾)))
1815, 17biadan2 673 . . 3 (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)))
19 ghmgrp1 17583 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp)
20 ghmgrp2 17584 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp)
2119, 20jca 554 . . . 4 (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))
22 ghmmhmb 17592 . . . . 5 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀))
2322eleq2d 2684 . . . 4 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2421, 23biadan2 673 . . 3 (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2512, 18, 243bitr4g 303 . 2 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2625eqrdv 2619 1 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862   MndHom cmhm 17254  Grpcgrp 17343   GrpHom cghm 17578 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-ghm 17579 This theorem is referenced by:  rhmpropd  18736  lmhmpropd  18992
 Copyright terms: Public domain W3C validator