Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Structured version   Visualization version   GIF version

Theorem ghmrn 17894
 Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))

Proof of Theorem ghmrn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2760 . . . 4 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 17885 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
4 frn 6214 . . 3 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
53, 4syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
6 fdm 6212 . . . . 5 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → dom 𝐹 = (Base‘𝑆))
73, 6syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆))
8 ghmgrp1 17883 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
91grpbn0 17672 . . . . 5 (𝑆 ∈ Grp → (Base‘𝑆) ≠ ∅)
108, 9syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (Base‘𝑆) ≠ ∅)
117, 10eqnetrd 2999 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 ≠ ∅)
12 dm0rn0 5497 . . . 4 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1312necon3bii 2984 . . 3 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
1411, 13sylib 208 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ≠ ∅)
15 eqid 2760 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
16 eqid 2760 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
171, 15, 16ghmlin 17886 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
18 ffn 6206 . . . . . . . . . . . 12 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
193, 18syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆))
20193ad2ant1 1128 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
211, 15grpcl 17651 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
228, 21syl3an1 1167 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
23 fnfvelrn 6520 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2420, 22, 23syl2anc 696 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2517, 24eqeltrrd 2840 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
26253expia 1115 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2726ralrimiv 3103 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
28 oveq2 6822 . . . . . . . . . 10 (𝑏 = (𝐹𝑎) → ((𝐹𝑐)(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
2928eleq1d 2824 . . . . . . . . 9 (𝑏 = (𝐹𝑎) → (((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3029ralrn 6526 . . . . . . . 8 (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3119, 30syl 17 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3231adantr 472 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3327, 32mpbird 247 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹)
34 eqid 2760 . . . . . . 7 (invg𝑆) = (invg𝑆)
35 eqid 2760 . . . . . . 7 (invg𝑇) = (invg𝑇)
361, 34, 35ghminv 17888 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) = ((invg𝑇)‘(𝐹𝑐)))
3719adantr 472 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
381, 34grpinvcl 17688 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
398, 38sylan 489 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
40 fnfvelrn 6520 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ ((invg𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
4137, 39, 40syl2anc 696 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
4236, 41eqeltrrd 2840 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)
4333, 42jca 555 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4443ralrimiva 3104 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
45 oveq1 6821 . . . . . . . 8 (𝑎 = (𝐹𝑐) → (𝑎(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)𝑏))
4645eleq1d 2824 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
4746ralbidv 3124 . . . . . 6 (𝑎 = (𝐹𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
48 fveq2 6353 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((invg𝑇)‘𝑎) = ((invg𝑇)‘(𝐹𝑐)))
4948eleq1d 2824 . . . . . 6 (𝑎 = (𝐹𝑐) → (((invg𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
5047, 49anbi12d 749 . . . . 5 (𝑎 = (𝐹𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5150ralrn 6526 . . . 4 (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5219, 51syl 17 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5344, 52mpbird 247 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))
54 ghmgrp2 17884 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
552, 16, 35issubg2 17830 . . 3 (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
5654, 55syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
575, 14, 53, 56mpbir3and 1428 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050   ⊆ wss 3715  ∅c0 4058  dom cdm 5266  ran crn 5267   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  Grpcgrp 17643  invgcminusg 17644  SubGrpcsubg 17809   GrpHom cghm 17878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-subg 17812  df-ghm 17879 This theorem is referenced by:  ghmghmrn  17900  ghmima  17902  cayley  18054
 Copyright terms: Public domain W3C validator