MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicref Structured version   Visualization version   GIF version

Theorem gicref 18405
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicref (𝑅 ∈ Grp → 𝑅𝑔 𝑅)

Proof of Theorem gicref
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
21idghm 18367 . . 3 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))
3 cnvresid 6427 . . . 4 ( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅))
43, 2eqeltrid 2917 . . 3 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))
5 isgim2 18399 . . 3 (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)))
62, 4, 5sylanbrc 585 . 2 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅))
7 brgici 18404 . 2 (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅𝑔 𝑅)
86, 7syl 17 1 (𝑅 ∈ Grp → 𝑅𝑔 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110   class class class wbr 5058   I cid 5453  ccnv 5548  cres 5551  cfv 6349  (class class class)co 7150  Basecbs 16477  Grpcgrp 18097   GrpHom cghm 18349   GrpIso cgim 18391  𝑔 cgic 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-1o 8096  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-ghm 18350  df-gim 18393  df-gic 18394
This theorem is referenced by:  gicer  18410
  Copyright terms: Public domain W3C validator