MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gidval Structured version   Visualization version   GIF version

Theorem gidval 27215
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
gidval.1 𝑋 = ran 𝐺
Assertion
Ref Expression
gidval (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem gidval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elex 3198 . 2 (𝐺𝑉𝐺 ∈ V)
2 rneq 5311 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
3 gidval.1 . . . . 5 𝑋 = ran 𝐺
42, 3syl6eqr 2673 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
5 oveq 6610 . . . . . . 7 (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥))
65eqeq1d 2623 . . . . . 6 (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥))
7 oveq 6610 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢))
87eqeq1d 2623 . . . . . 6 (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥))
96, 8anbi12d 746 . . . . 5 (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
104, 9raleqbidv 3141 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
114, 10riotaeqbidv 6568 . . 3 (𝑔 = 𝐺 → (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
12 df-gid 27197 . . 3 GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
13 riotaex 6569 . . 3 (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V
1411, 12, 13fvmpt 6239 . 2 (𝐺 ∈ V → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
151, 14syl 17 1 (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  ran crn 5075  cfv 5847  crio 6564  (class class class)co 6604  GIdcgi 27193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fv 5855  df-riota 6565  df-ov 6607  df-gid 27197
This theorem is referenced by:  grpoidval  27216  idrval  33288  exidresid  33310
  Copyright terms: Public domain W3C validator