Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconN Structured version   Visualization version   GIF version

Theorem glbconN 36393
Description: De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconN ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝑈(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem glbconN
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfin5 3941 . . . 4 (𝐵𝑆) = {𝑥𝐵𝑥𝑆}
2 sseqin2 4189 . . . . 5 (𝑆𝐵 ↔ (𝐵𝑆) = 𝑆)
32biimpi 217 . . . 4 (𝑆𝐵 → (𝐵𝑆) = 𝑆)
41, 3syl5reqr 2868 . . 3 (𝑆𝐵𝑆 = {𝑥𝐵𝑥𝑆})
54fveq2d 6667 . 2 (𝑆𝐵 → (𝐺𝑆) = (𝐺‘{𝑥𝐵𝑥𝑆}))
6 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
7 eqid 2818 . . . 4 (le‘𝐾) = (le‘𝐾)
8 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
9 biid 262 . . . 4 ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
10 id 22 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ HL)
11 ssrab2 4053 . . . . 5 {𝑥𝐵𝑥𝑆} ⊆ 𝐵
1211a1i 11 . . . 4 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ⊆ 𝐵)
136, 7, 8, 9, 10, 12glbval 17595 . . 3 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))))
14 hlop 36378 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
15 hlclat 36374 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
166, 8clatglbcl 17712 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑥𝐵𝑥𝑆} ⊆ 𝐵) → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1715, 11, 16sylancl 586 . . . . . 6 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1813, 17eqeltrrd 2911 . . . . 5 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
196fvexi 6677 . . . . . 6 𝐵 ∈ V
2019riotaclbBAD 35971 . . . . 5 (∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
2118, 20sylibr 235 . . . 4 (𝐾 ∈ HL → ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
22 glbcon.o . . . . 5 = (oc‘𝐾)
23 breq1 5060 . . . . . . 7 (𝑦 = ( 𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)𝑧))
2423ralbidv 3194 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧))
25 breq2 5061 . . . . . . . 8 (𝑦 = ( 𝑣) → (𝑤(le‘𝐾)𝑦𝑤(le‘𝐾)( 𝑣)))
2625imbi2d 342 . . . . . . 7 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2726ralbidv 3194 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2824, 27anbi12d 630 . . . . 5 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))))
296, 22, 28riotaocN 36225 . . . 4 ((𝐾 ∈ OP ∧ ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3014, 21, 29syl2anc 584 . . 3 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3114ad2antrr 722 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
326, 22opoccl 36210 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3331, 32sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3414ad2antrr 722 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
356, 22opoccl 36210 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
3634, 35sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
376, 22opococ 36211 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3834, 37sylancom 588 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3938eqcomd 2824 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
40 fveq2 6663 . . . . . . . . . . . 12 (𝑢 = ( 𝑧) → ( 𝑢) = ( ‘( 𝑧)))
4140rspceeqv 3635 . . . . . . . . . . 11 ((( 𝑧) ∈ 𝐵𝑧 = ( ‘( 𝑧))) → ∃𝑢𝐵 𝑧 = ( 𝑢))
4236, 39, 41syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
43 eleq1 2897 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (𝑧𝑆 ↔ ( 𝑢) ∈ 𝑆))
44 breq2 5061 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (( 𝑣)(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4543, 44imbi12d 346 . . . . . . . . . . 11 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4645adantl 482 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4733, 42, 46ralxfrd 5299 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
48 simpr 485 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
49 simplr 765 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑣𝐵)
506, 7, 22oplecon3b 36216 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑣𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5131, 48, 49, 50syl3anc 1363 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5251imbi2d 342 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5352ralbidva 3193 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5447, 53bitr4d 283 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣)))
55 eleq1 2897 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑆𝑧𝑆))
5655ralrab 3682 . . . . . . . 8 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧))
57 fveq2 6663 . . . . . . . . . 10 (𝑥 = 𝑢 → ( 𝑥) = ( 𝑢))
5857eleq1d 2894 . . . . . . . . 9 (𝑥 = 𝑢 → (( 𝑥) ∈ 𝑆 ↔ ( 𝑢) ∈ 𝑆))
5958ralrab 3682 . . . . . . . 8 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣))
6054, 56, 593bitr4g 315 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣))
6114ad2antrr 722 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝐾 ∈ OP)
626, 22opoccl 36210 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6361, 62sylancom 588 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6414ad2antrr 722 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝐾 ∈ OP)
656, 22opoccl 36210 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
6664, 65sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
676, 22opococ 36211 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6864, 67sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6968eqcomd 2824 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝑤 = ( ‘( 𝑤)))
70 fveq2 6663 . . . . . . . . . . 11 (𝑡 = ( 𝑤) → ( 𝑡) = ( ‘( 𝑤)))
7170rspceeqv 3635 . . . . . . . . . 10 ((( 𝑤) ∈ 𝐵𝑤 = ( ‘( 𝑤))) → ∃𝑡𝐵 𝑤 = ( 𝑡))
7266, 69, 71syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ∃𝑡𝐵 𝑤 = ( 𝑡))
73 breq1 5060 . . . . . . . . . . . 12 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)𝑧))
7473ralbidv 3194 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
75 breq1 5060 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)( 𝑣) ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
7674, 75imbi12d 346 . . . . . . . . . 10 (𝑤 = ( 𝑡) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7776adantl 482 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤 = ( 𝑡)) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7863, 72, 77ralxfrd 5299 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7914ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
80 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
81 simplr 765 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑡𝐵)
826, 7, 22oplecon3b 36216 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑡𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8379, 80, 81, 82syl3anc 1363 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8483imbi2d 342 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8584ralbidva 3193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8679, 32sylancom 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
8714ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
8887, 35sylancom 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
8987, 37sylancom 588 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
9089eqcomd 2824 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
9188, 90, 41syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
92 breq2 5061 . . . . . . . . . . . . . . 15 (𝑧 = ( 𝑢) → (( 𝑡)(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
9343, 92imbi12d 346 . . . . . . . . . . . . . 14 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9493adantl 482 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9586, 91, 94ralxfrd 5299 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9685, 95bitr4d 283 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧)))
9758ralrab 3682 . . . . . . . . . . 11 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡))
9855ralrab 3682 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧))
9996, 97, 983bitr4g 315 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
100 simplr 765 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑣𝐵)
101 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑡𝐵)
1026, 7, 22oplecon3b 36216 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑣𝐵𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10361, 100, 101, 102syl3anc 1363 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10499, 103imbi12d 346 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
105104ralbidva 3193 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
10678, 105bitr4d 283 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
10760, 106anbi12d 630 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑣𝐵) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
108107riotabidva 7122 . . . . 5 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
109 ssrab2 4053 . . . . . 6 {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵
110 glbcon.u . . . . . . 7 𝑈 = (lub‘𝐾)
111 biid 262 . . . . . . 7 ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
112 simpl 483 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL)
113 simpr 485 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵)
1146, 7, 110, 111, 112, 113lubval 17582 . . . . . 6 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
115109, 114mpan2 687 . . . . 5 (𝐾 ∈ HL → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
116108, 115eqtr4d 2856 . . . 4 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}))
117116fveq2d 6667 . . 3 (𝐾 ∈ HL → ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
11813, 30, 1173eqtrd 2857 . 2 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
1195, 118sylan9eqr 2875 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  ∃!wreu 3137  {crab 3139  cin 3932  wss 3933   class class class wbr 5057  cfv 6348  crio 7102  Basecbs 16471  lecple 16560  occoc 16561  lubclub 17540  glbcglb 17541  CLatccla 17705  OPcops 36188  HLchlt 36366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-riotaBAD 35969
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-undef 7928  df-lub 17572  df-glb 17573  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-hlat 36367
This theorem is referenced by:  glbconxN  36394
  Copyright terms: Public domain W3C validator