MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbval Structured version   Visualization version   GIF version

Theorem glbval 16918
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
glbval (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbval.b . . . . 5 𝐵 = (Base‘𝐾)
2 glbval.l . . . . 5 = (le‘𝐾)
3 glbval.g . . . . 5 𝐺 = (glb‘𝐾)
4 biid 251 . . . . 5 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbva.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝐾𝑉)
71, 2, 3, 4, 6glbfval 16912 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
87fveq1d 6150 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆))
9 glbval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
10 simpr 477 . . . . . 6 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺)
111, 2, 3, 9, 6, 10glbeu 16917 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → ∃!𝑥𝐵 𝜓)
12 raleq 3127 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 raleq 3127 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
1413imbi1d 331 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514ralbidv 2980 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1612, 15anbi12d 746 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1716, 9syl6bbr 278 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ 𝜓))
1817reubidv 3115 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3334 . . . . . 6 (𝑆 ∈ dom 𝐺 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 482 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 247 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
22 fvres 6164 . . . 4 (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
2321, 22syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
24 glbval.ss . . . . . 6 (𝜑𝑆𝐵)
2524adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆𝐵)
26 fvex 6158 . . . . . . 7 (Base‘𝐾) ∈ V
271, 26eqeltri 2694 . . . . . 6 𝐵 ∈ V
2827elpw2 4788 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2925, 28sylibr 224 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵)
3017riotabidv 6567 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 𝜓))
31 eqid 2621 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
32 riotaex 6569 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3330, 31, 32fvmpt 6239 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
3429, 33syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
358, 23, 343eqtrd 2659 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
36 ndmfv 6175 . . . 4 𝑆 ∈ dom 𝐺 → (𝐺𝑆) = ∅)
3736adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = ∅)
381, 2, 3, 9, 5glbeldm 16915 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3938biimprd 238 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝐺))
4024, 39mpand 710 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝐺))
4140con3dimp 457 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥𝐵 𝜓)
42 riotaund 6601 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4341, 42syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝑥𝐵 𝜓) = ∅)
4437, 43eqtr4d 2658 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
4535, 44pm2.61dan 831 1 (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  ∃!wreu 2909  Vcvv 3186  wss 3555  c0 3891  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  dom cdm 5074  cres 5076  cfv 5847  crio 6564  Basecbs 15781  lecple 15869  glbcglb 16864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-glb 16896
This theorem is referenced by:  glbcl  16919  glbprop  16920  meetval2  16944  isglbd  17038  tosglb  29452  glb0N  33957  glbconN  34140
  Copyright terms: Public domain W3C validator