Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem2 Structured version   Visualization version   GIF version

Theorem goldbachthlem2 40783
Description: Lemma 2 for goldbachth 40784. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachthlem2
StepHypRef Expression
1 fmtnonn 40768 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
21nnzd 11433 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
3 fmtnonn 40768 . . . . . 6 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
43nnzd 11433 . . . . 5 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
52, 4anim12ci 590 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
653adant3 1079 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
7 gcddvds 15160 . . 3 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
86, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
9 goldbachthlem1 40782 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
10 gcdcl 15163 . . . . . . 7 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
1211nn0zd 11432 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ)
1343ad2ant2 1081 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∈ ℤ)
14 2z 11361 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℤ)
162, 15zsubcld 11439 . . . . . 6 (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 2) ∈ ℤ)
17163ad2ant1 1080 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) ∈ ℤ)
18 dvdstr 14953 . . . . 5 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
1912, 13, 17, 18syl3anc 1323 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
209, 19mpan2d 709 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
2123ad2ant1 1080 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℤ)
22 dvds2sub 14951 . . . . . 6 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2312, 21, 17, 22syl3anc 1323 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2423ancomsd 470 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
251nncnd 10988 . . . . . . . 8 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℂ)
26253ad2ant1 1080 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℂ)
27 2cnd 11045 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 2 ∈ ℂ)
2826, 27nncand 10349 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) = 2)
2928breq2d 4630 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) ↔ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2))
30 2prm 15340 . . . . . . 7 2 ∈ ℙ
311, 3anim12ci 590 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
32313adant3 1079 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
33 gcdnncl 15164 . . . . . . . 8 (((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
3432, 33syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
35 dvdsprime 15335 . . . . . . 7 ((2 ∈ ℙ ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
3630, 34, 35sylancr 694 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
375, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
38 breq1 4621 . . . . . . . . . . . . . 14 (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3938adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
40 fmtnoodd 40770 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
4140pm2.21d 118 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4241ad2antrr 761 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4339, 42sylbid 230 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4443ex 450 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4544com23 86 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4645adantld 483 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4737, 46mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
48473adant3 1079 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
49 gcdcom 15170 . . . . . . . . . 10 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
506, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
5150eqeq1d 2623 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 ↔ ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5251biimpd 219 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5348, 52jaod 395 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5436, 53sylbid 230 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5529, 54sylbid 230 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5624, 55syld 47 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5720, 56syland 498 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
588, 57mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  1c1 9889   < clt 10026  cmin 10218  cn 10972  2c2 11022  0cn0 11244  cz 11329  cdvds 14918   gcd cgcd 15151  cprime 15320  FermatNocfmtno 40764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-prod 14572  df-dvds 14919  df-gcd 15152  df-prm 15321  df-fmtno 40765
This theorem is referenced by:  goldbachth  40784
  Copyright terms: Public domain W3C validator