MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0ssusgr Structured version   Visualization version   GIF version

Theorem griedg0ssusgr 27049
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0ssusgr 𝑈 ⊆ USGraph
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0ssusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 griedg0prc.u . . . . 5 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21eleq2i 2906 . . . 4 (𝑔𝑈𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅})
3 elopab 5416 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
42, 3bitri 277 . . 3 (𝑔𝑈 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
5 opex 5358 . . . . . . . 8 𝑣, 𝑒⟩ ∈ V
65a1i 11 . . . . . . 7 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ V)
7 vex 3499 . . . . . . . . 9 𝑣 ∈ V
8 vex 3499 . . . . . . . . 9 𝑒 ∈ V
97, 8opiedgfvi 26797 . . . . . . . 8 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 f0bi 6564 . . . . . . . . 9 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
1110biimpi 218 . . . . . . . 8 (𝑒:∅⟶∅ → 𝑒 = ∅)
129, 11syl5eq 2870 . . . . . . 7 (𝑒:∅⟶∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
136, 12usgr0e 27020 . . . . . 6 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
1413adantl 484 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
15 eleq1 2902 . . . . . 6 (𝑔 = ⟨𝑣, 𝑒⟩ → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1615adantr 483 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1714, 16mpbird 259 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
1817exlimivv 1933 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
194, 18sylbi 219 . 2 (𝑔𝑈𝑔 ∈ USGraph)
2019ssriv 3973 1 𝑈 ⊆ USGraph
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  wss 3938  c0 4293  cop 4575  {copab 5130  wf 6353  cfv 6357  iEdgciedg 26784  USGraphcusgr 26936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fv 6365  df-2nd 7692  df-iedg 26786  df-usgr 26938
This theorem is referenced by:  usgrprc  27050
  Copyright terms: Public domain W3C validator