MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpw Structured version   Visualization version   GIF version

Theorem grothpw 9402
Description: Derive the Axiom of Power Sets ax-pow 4668 from the Tarski-Grothendieck axiom ax-groth 9399. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html. Note that ax-pow 4668 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpw 𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem grothpw
StepHypRef Expression
1 simpl 471 . . . . . . . 8 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → 𝒫 𝑧𝑦)
21ralimi 2840 . . . . . . 7 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → ∀𝑧𝑦 𝒫 𝑧𝑦)
3 pweq 4014 . . . . . . . . 9 (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥)
43sseq1d 3499 . . . . . . . 8 (𝑧 = 𝑥 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑥𝑦))
54rspccv 3183 . . . . . . 7 (∀𝑧𝑦 𝒫 𝑧𝑦 → (𝑥𝑦 → 𝒫 𝑥𝑦))
62, 5syl 17 . . . . . 6 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → (𝑥𝑦 → 𝒫 𝑥𝑦))
76anim2i 590 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
873adant3 1073 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
9 pm3.35 608 . . . 4 ((𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)) → 𝒫 𝑥𝑦)
10 vex 3080 . . . . 5 𝑦 ∈ V
1110ssex 4629 . . . 4 (𝒫 𝑥𝑦 → 𝒫 𝑥 ∈ V)
128, 9, 113syl 18 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → 𝒫 𝑥 ∈ V)
13 axgroth5 9400 . . 3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
1412, 13exlimiiv 1812 . 2 𝒫 𝑥 ∈ V
15 pwidg 4024 . . . . 5 (𝒫 𝑥 ∈ V → 𝒫 𝑥 ∈ 𝒫 𝒫 𝑥)
16 pweq 4014 . . . . . . 7 (𝑦 = 𝒫 𝑥 → 𝒫 𝑦 = 𝒫 𝒫 𝑥)
1716eleq2d 2577 . . . . . 6 (𝑦 = 𝒫 𝑥 → (𝒫 𝑥 ∈ 𝒫 𝑦 ↔ 𝒫 𝑥 ∈ 𝒫 𝒫 𝑥))
1817spcegv 3171 . . . . 5 (𝒫 𝑥 ∈ V → (𝒫 𝑥 ∈ 𝒫 𝒫 𝑥 → ∃𝑦𝒫 𝑥 ∈ 𝒫 𝑦))
1915, 18mpd 15 . . . 4 (𝒫 𝑥 ∈ V → ∃𝑦𝒫 𝑥 ∈ 𝒫 𝑦)
20 elex 3089 . . . . 5 (𝒫 𝑥 ∈ 𝒫 𝑦 → 𝒫 𝑥 ∈ V)
2120exlimiv 1811 . . . 4 (∃𝑦𝒫 𝑥 ∈ 𝒫 𝑦 → 𝒫 𝑥 ∈ V)
2219, 21impbii 197 . . 3 (𝒫 𝑥 ∈ V ↔ ∃𝑦𝒫 𝑥 ∈ 𝒫 𝑦)
2310elpw2 4654 . . . . 5 (𝒫 𝑥 ∈ 𝒫 𝑦 ↔ 𝒫 𝑥𝑦)
24 pwss 4026 . . . . . 6 (𝒫 𝑥𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
25 dfss2 3461 . . . . . . . 8 (𝑧𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
2625imbi1i 337 . . . . . . 7 ((𝑧𝑥𝑧𝑦) ↔ (∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2726albii 1722 . . . . . 6 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2824, 27bitri 262 . . . . 5 (𝒫 𝑥𝑦 ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2923, 28bitri 262 . . . 4 (𝒫 𝑥 ∈ 𝒫 𝑦 ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
3029exbii 1752 . . 3 (∃𝑦𝒫 𝑥 ∈ 𝒫 𝑦 ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
3122, 30bitri 262 . 2 (𝒫 𝑥 ∈ V ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
3214, 31mpbi 218 1 𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030  wal 1472   = wceq 1474  wex 1694  wcel 1938  wral 2800  wrex 2801  Vcvv 3077  wss 3444  𝒫 cpw 4011   class class class wbr 4481  cen 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-groth 9399
This theorem depends on definitions:  df-bi 195  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-v 3079  df-in 3451  df-ss 3458  df-pw 4013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator