MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpwex Structured version   Visualization version   GIF version

Theorem grothpwex 9601
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9597. Note that ax-pow 4808 is not used by the proof. Use axpweq 4807 to obtain ax-pow 4808. Use pwex 4813 or pwexg 4815 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpwex 𝒫 𝑥 ∈ V

Proof of Theorem grothpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → 𝒫 𝑧𝑦)
21ralimi 2947 . . . . . 6 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → ∀𝑧𝑦 𝒫 𝑧𝑦)
3 pweq 4138 . . . . . . . 8 (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥)
43sseq1d 3616 . . . . . . 7 (𝑧 = 𝑥 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑥𝑦))
54rspccv 3295 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (𝑥𝑦 → 𝒫 𝑥𝑦))
62, 5syl 17 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → (𝑥𝑦 → 𝒫 𝑥𝑦))
76anim2i 592 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
873adant3 1079 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
9 pm3.35 610 . . 3 ((𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)) → 𝒫 𝑥𝑦)
10 vex 3192 . . . 4 𝑦 ∈ V
1110ssex 4767 . . 3 (𝒫 𝑥𝑦 → 𝒫 𝑥 ∈ V)
128, 9, 113syl 18 . 2 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → 𝒫 𝑥 ∈ V)
13 axgroth5 9598 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
1412, 13exlimiiv 1856 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  wss 3559  𝒫 cpw 4135   class class class wbr 4618  cen 7904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-groth 9597
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-v 3191  df-in 3566  df-ss 3573  df-pw 4137
This theorem is referenced by:  isrnsigaOLD  29980
  Copyright terms: Public domain W3C validator