MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1 Structured version   Visualization version   GIF version

Theorem grp1 17569
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1 (𝐼𝑉𝑀 ∈ Grp)

Proof of Theorem grp1
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mnd1 17378 . 2 (𝐼𝑉𝑀 ∈ Mnd)
3 df-ov 6693 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 4962 . . . . . 6 𝐼, 𝐼⟩ ∈ V
5 fvsng 6488 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 706 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6syl5eq 2697 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
81mnd1id 17379 . . . 4 (𝐼𝑉 → (0g𝑀) = 𝐼)
97, 8eqtr4d 2688 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀))
10 oveq2 6698 . . . . . . 7 (𝑖 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1110eqeq1d 2653 . . . . . 6 (𝑖 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1211rexbidv 3081 . . . . 5 (𝑖 = 𝐼 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1312ralsng 4250 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
14 oveq1 6697 . . . . . 6 (𝑒 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1514eqeq1d 2653 . . . . 5 (𝑒 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1615rexsng 4251 . . . 4 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1713, 16bitrd 268 . . 3 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
189, 17mpbird 247 . 2 (𝐼𝑉 → ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))
19 snex 4938 . . . 4 {𝐼} ∈ V
201grpbase 16038 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
2119, 20ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
22 snex 4938 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
231grpplusg 16039 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2422, 23ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
25 eqid 2651 . . 3 (0g𝑀) = (0g𝑀)
2621, 24, 25isgrp 17475 . 2 (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀)))
272, 18, 26sylanbrc 699 1 (𝐼𝑉𝑀 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  {csn 4210  {cpr 4212  cop 4216  cfv 5926  (class class class)co 6690  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Mndcmnd 17341  Grpcgrp 17469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472
This theorem is referenced by:  grp1inv  17570  abl1  18315  ring1  18648  lmod1  42606
  Copyright terms: Public domain W3C validator