MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv Structured version   Visualization version   GIF version

Theorem grpidinv 17456
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b 𝐵 = (Base‘𝐺)
grpidinv.p + = (+g𝐺)
Assertion
Ref Expression
grpidinv (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Distinct variable groups:   𝑢,𝐺,𝑥,𝑦   𝑢,𝐵,𝑦   𝑢, + ,𝑦
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2620 . . 3 (0g𝐺) = (0g𝐺)
31, 2grpidcl 17431 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
4 oveq1 6642 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑢 + 𝑥) = ((0g𝐺) + 𝑥))
54eqeq1d 2622 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
6 oveq2 6643 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g𝐺)))
76eqeq1d 2622 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g𝐺)) = 𝑥))
85, 7anbi12d 746 . . . . 5 (𝑢 = (0g𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥)))
9 eqeq2 2631 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g𝐺)))
10 eqeq2 2631 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g𝐺)))
119, 10anbi12d 746 . . . . . 6 (𝑢 = (0g𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1211rexbidv 3048 . . . . 5 (𝑢 = (0g𝐺) → (∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
138, 12anbi12d 746 . . . 4 (𝑢 = (0g𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1413ralbidv 2983 . . 3 (𝑢 = (0g𝐺) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1514adantl 482 . 2 ((𝐺 ∈ Grp ∧ 𝑢 = (0g𝐺)) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
16 grpidinv.p . . . 4 + = (+g𝐺)
171, 16, 2grpidinv2 17455 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1817ralrimiva 2963 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
193, 15, 18rspcedvd 3312 1 (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909  wrex 2910  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  0gc0g 16081  Grpcgrp 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator