MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvadd Structured version   Visualization version   GIF version

Theorem grpinvadd 18115
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b 𝐵 = (Base‘𝐺)
grpinvadd.p + = (+g𝐺)
grpinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvadd ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1129 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1130 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 grpinvadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 grpinvadd.n . . . . . . 7 𝑁 = (invg𝐺)
64, 5grpinvcl 18089 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
763adant2 1123 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
84, 5grpinvcl 18089 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
983adant3 1124 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
10 grpinvadd.p . . . . . 6 + = (+g𝐺)
114, 10grpcl 18049 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
121, 7, 9, 11syl3anc 1363 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
134, 10grpass 18050 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
141, 2, 3, 12, 13syl13anc 1364 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
15 eqid 2818 . . . . . . . 8 (0g𝐺) = (0g𝐺)
164, 10, 15, 5grprinv 18091 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
17163adant2 1123 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
1817oveq1d 7160 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = ((0g𝐺) + (𝑁𝑋)))
194, 10grpass 18050 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑌𝐵 ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
201, 3, 7, 9, 19syl13anc 1364 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
214, 10, 15grplid 18071 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
221, 9, 21syl2anc 584 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
2318, 20, 223eqtr3d 2861 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + ((𝑁𝑌) + (𝑁𝑋))) = (𝑁𝑋))
2423oveq2d 7161 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))) = (𝑋 + (𝑁𝑋)))
254, 10, 15, 5grprinv 18091 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
26253adant3 1124 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
2714, 24, 263eqtrd 2857 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺))
284, 10grpcl 18049 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
294, 10, 15, 5grpinvid1 18092 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
301, 28, 12, 29syl3anc 1363 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
3127, 30mpbird 258 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7103  df-ov 7148  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045
This theorem is referenced by:  grpinvsub  18119  mulgaddcomlem  18188  mulginvcom  18190  mulgdir  18197  eqger  18268  eqgcpbl  18272  invoppggim  18426  sylow2blem1  18674  lsmsubg  18708  ablinvadd  18859  ablsub2inv  18860  invghm  18883  rdivmuldivd  30789  dvrcan5  30791
  Copyright terms: Public domain W3C validator