MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Structured version   Visualization version   GIF version

Theorem grpinvinv 17247
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
31, 2grpinvcl 17232 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
4 eqid 2605 . . . . 5 (+g𝐺) = (+g𝐺)
5 eqid 2605 . . . . 5 (0g𝐺) = (0g𝐺)
61, 4, 5, 2grprinv 17234 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
73, 6syldan 485 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
81, 4, 5, 2grplinv 17233 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)𝑋) = (0g𝐺))
97, 8eqtr4d 2642 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋))
10 simpl 471 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
111, 2grpinvcl 17232 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
123, 11syldan 485 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
13 simpr 475 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
141, 4grplcan 17242 . . 3 ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁𝑋)) ∈ 𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
1510, 12, 13, 3, 14syl13anc 1319 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
169, 15mpbid 220 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  cfv 5786  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  0gc0g 15865  Grpcgrp 17187  invgcminusg 17188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-minusg 17191
This theorem is referenced by:  grpinv11  17249  grpinvnz  17251  grpsubinv  17253  grpinvsub  17262  grpsubeq0  17266  grpnpcan  17272  mulgneg  17325  mulgnegneg  17326  mulginvinv  17331  mulgdir  17338  mulgass  17344  eqger  17409  frgpuptinv  17949  ablsub2inv  17981  mulgdi  17997  invghm  18004  ringm2neg  18363  unitinvinv  18440  unitnegcl  18446  irrednegb  18476  abvneg  18599  lspsnneg  18769  islindf4  19934  tgpconcomp  21664  archirngz  28876  archiabllem1b  28879  baerlem5amN  35822  baerlem5bmN  35823  baerlem5abmN  35824
  Copyright terms: Public domain W3C validator