MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval Structured version   Visualization version   GIF version

Theorem grpinvval 18146
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . 4 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
21eqeq1d 2825 . . 3 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
32riotabidv 7118 . 2 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
4 grpinvval.b . . 3 𝐵 = (Base‘𝐺)
5 grpinvval.p . . 3 + = (+g𝐺)
6 grpinvval.o . . 3 0 = (0g𝐺)
7 grpinvval.n . . 3 𝑁 = (invg𝐺)
84, 5, 6, 7grpinvfval 18144 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
9 riotaex 7120 . 2 (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V
103, 8, 9fvmpt 6770 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  invgcminusg 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-minusg 18109
This theorem is referenced by:  grplinv  18154  isgrpinv  18158  xrsinvgval  30666  ringinvval  30865
  Copyright terms: Public domain W3C validator