![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvval2 | Structured version Visualization version GIF version |
Description: A df-neg 10307-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
grpinvsub.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinvval2.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpinvval2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvval2.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 17497 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
4 | eqid 2651 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | grpinvsub.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
6 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
7 | 1, 4, 5, 6 | grpsubval 17512 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
8 | 3, 7 | sylan 487 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
9 | 1, 5 | grpinvcl 17514 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
10 | 1, 4, 2 | grplid 17499 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
11 | 9, 10 | syldan 486 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
12 | 8, 11 | eqtr2d 2686 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 0gc0g 16147 Grpcgrp 17469 invgcminusg 17470 -gcsg 17471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 |
This theorem is referenced by: grpsubadd0sub 17549 matinvgcell 20289 istgp2 21942 nrmmetd 22426 nminv 22472 |
Copyright terms: Public domain | W3C validator |