MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpissubg Structured version   Visualization version   GIF version

Theorem grpissubg 18237
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
grpissubg.b 𝐵 = (Base‘𝐺)
grpissubg.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
grpissubg ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))

Proof of Theorem grpissubg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆𝐵)
21adantl 482 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
3 grpissubg.s . . . . 5 𝑆 = (Base‘𝐻)
43grpbn0 18070 . . . 4 (𝐻 ∈ Grp → 𝑆 ≠ ∅)
54ad2antlr 723 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ≠ ∅)
6 grpmnd 18048 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
7 mndmgm 17906 . . . . . . . . . . 11 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
86, 7syl 17 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mgm)
9 grpmnd 18048 . . . . . . . . . . 11 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
10 mndmgm 17906 . . . . . . . . . . 11 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
119, 10syl 17 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mgm)
128, 11anim12i 612 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1312adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1413ad2antrr 722 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
15 simpr 485 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
1615ad2antrr 722 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
17 simpr 485 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → 𝑎𝑆)
1817anim1i 614 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎𝑆𝑏𝑆))
19 grpissubg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2019, 3mgmsscl 17845 . . . . . . 7 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2114, 16, 18, 20syl3anc 1363 . . . . . 6 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2221ralrimiva 3179 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
23 simpl 483 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp)
2423adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp)
25 simplr 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp)
2619sseq2i 3993 . . . . . . . . . . 11 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
2726biimpi 217 . . . . . . . . . 10 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
2827adantr 481 . . . . . . . . 9 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺))
2928adantl 482 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺))
30 ovres 7303 . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
3130adantl 482 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
32 oveq 7151 . . . . . . . . . . . . 13 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3332adantl 482 . . . . . . . . . . . 12 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3433eqcomd 2824 . . . . . . . . . . 11 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3534ad2antlr 723 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3631, 35eqtr3d 2855 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
3736ralrimivva 3188 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
3824, 25, 3, 29, 37grpinvssd 18114 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎𝑆 → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎)))
3938imp 407 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎))
40 eqid 2818 . . . . . . . 8 (invg𝐻) = (invg𝐻)
413, 40grpinvcl 18089 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4241ad4ant24 750 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4339, 42eqeltrrd 2911 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐺)‘𝑎) ∈ 𝑆)
4422, 43jca 512 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
4544ralrimiva 3179 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
46 eqid 2818 . . . . 5 (+g𝐺) = (+g𝐺)
47 eqid 2818 . . . . 5 (invg𝐺) = (invg𝐺)
4819, 46, 47issubg2 18232 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
4948ad2antrr 722 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
502, 5, 45, 49mpbir3and 1334 . 2 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺))
5150ex 413 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wss 3933  c0 4288   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Mgmcmgm 17838  Mndcmnd 17899  Grpcgrp 18041  invgcminusg 18042  SubGrpcsubg 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214
This theorem is referenced by:  resgrpisgrp  18238  pgrpsubgsymg  18466
  Copyright terms: Public domain W3C validator