MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactf1o Structured version   Visualization version   GIF version

Theorem grplactf1o 17720
Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
grplact.3 + = (+g𝐺)
Assertion
Ref Expression
grplactf1o ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactf1o
StepHypRef Expression
1 grplact.1 . . 3 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . 3 𝑋 = (Base‘𝐺)
3 grplact.3 . . 3 + = (+g𝐺)
4 eqid 2760 . . 3 (invg𝐺) = (invg𝐺)
51, 2, 3, 4grplactcnv 17719 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘((invg𝐺)‘𝐴))))
65simpld 477 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cmpt 4881  ccnv 5265  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Grpcgrp 17623  invgcminusg 17624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627
This theorem is referenced by:  eqgen  17848  dchrsum2  25192  sumdchr2  25194
  Copyright terms: Public domain W3C validator