MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnpncan Structured version   Visualization version   GIF version

Theorem grpnpncan 17282
Description: Cancellation law for group subtraction. (npncan 10154 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpnpncan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + (𝑌 𝑍)) = (𝑋 𝑍))

Proof of Theorem grpnpncan
StepHypRef Expression
1 simpl 472 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 grpsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . 5 = (-g𝐺)
42, 3grpsubcl 17267 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
543adant3r3 1268 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
6 simpr2 1061 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
7 simpr3 1062 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
8 grpsubadd.p . . . 4 + = (+g𝐺)
92, 8, 3grpaddsubass 17277 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑌) 𝑍) = ((𝑋 𝑌) + (𝑌 𝑍)))
101, 5, 6, 7, 9syl13anc 1320 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑌) 𝑍) = ((𝑋 𝑌) + (𝑌 𝑍)))
112, 8, 3grpnpcan 17279 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
12113adant3r3 1268 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑌) = 𝑋)
1312oveq1d 6542 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑌) 𝑍) = (𝑋 𝑍))
1410, 13eqtr3d 2646 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + (𝑌 𝑍)) = (𝑋 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5790  (class class class)co 6527  Basecbs 15644  +gcplusg 15717  Grpcgrp 17194  -gcsg 17196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-sbg 17199
This theorem is referenced by:  grpnpncan0  17283  telgsumfzslem  18157  nmtri2  22189
  Copyright terms: Public domain W3C validator