MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivinv Structured version   Visualization version   GIF version

Theorem grpodivinv 28315
Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivinv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝑁𝐵)) = (𝐴𝐺𝐵))

Proof of Theorem grpodivinv
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (inv‘𝐺)
31, 2grpoinvcl 28303 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
433adant2 1127 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
5 grpdiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
61, 2, 5grpodivval 28314 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝑁𝐵) ∈ 𝑋) → (𝐴𝐷(𝑁𝐵)) = (𝐴𝐺(𝑁‘(𝑁𝐵))))
74, 6syld3an3 1405 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝑁𝐵)) = (𝐴𝐺(𝑁‘(𝑁𝐵))))
81, 2grpo2inv 28310 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
983adant2 1127 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
109oveq2d 7174 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁‘(𝑁𝐵))) = (𝐴𝐺𝐵))
117, 10eqtrd 2858 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝑁𝐵)) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  GrpOpcgr 28268  invcgn 28270   /𝑔 cgs 28271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275
This theorem is referenced by:  ablodivdiv4  28333
  Copyright terms: Public domain W3C validator