MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Visualization version   GIF version

Theorem grpoidinv2 27209
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoidinv2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoidinv2
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7 𝑋 = ran 𝐺
2 grpoidval.2 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidval 27207 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 = (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
41grpoideu 27203 . . . . . . 7 (𝐺 ∈ GrpOp → ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 riotacl2 6579 . . . . . . 7 (∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
64, 5syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
73, 6eqeltrd 2704 . . . . 5 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
8 simpll 789 . . . . . . . . . . 11 ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → (𝑢𝐺𝑥) = 𝑥)
98ralimi 2952 . . . . . . . . . 10 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
109rgenw 2924 . . . . . . . . 9 𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
1110a1i 11 . . . . . . . 8 (𝐺 ∈ GrpOp → ∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
121grpoidinv 27202 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))
1311, 12, 43jca 1240 . . . . . . 7 (𝐺 ∈ GrpOp → (∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
14 reupick2 3894 . . . . . . 7 (((∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1513, 14sylan 488 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1615rabbidva 3181 . . . . 5 (𝐺 ∈ GrpOp → {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥} = {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
177, 16eleqtrd 2706 . . . 4 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
18 oveq1 6612 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1918eqeq1d 2628 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
20 oveq2 6613 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐺𝑢) = (𝑥𝐺𝑈))
2120eqeq1d 2628 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑥𝐺𝑢) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
2219, 21anbi12d 746 . . . . . . 7 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
23 eqeq2 2637 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
24 eqeq2 2637 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑥𝐺𝑦) = 𝑢 ↔ (𝑥𝐺𝑦) = 𝑈))
2523, 24anbi12d 746 . . . . . . . 8 (𝑢 = 𝑈 → (((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2625rexbidv 3050 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2722, 26anbi12d 746 . . . . . 6 (𝑢 = 𝑈 → ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2827ralbidv 2985 . . . . 5 (𝑢 = 𝑈 → (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2928elrab 3351 . . . 4 (𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))} ↔ (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3017, 29sylib 208 . . 3 (𝐺 ∈ GrpOp → (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3130simprd 479 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
32 oveq2 6613 . . . . . 6 (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴))
33 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
3432, 33eqeq12d 2641 . . . . 5 (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴))
35 oveq1 6612 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈))
3635, 33eqeq12d 2641 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴))
3734, 36anbi12d 746 . . . 4 (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)))
38 oveq2 6613 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
3938eqeq1d 2628 . . . . . 6 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
40 oveq1 6612 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
4140eqeq1d 2628 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = 𝑈 ↔ (𝐴𝐺𝑦) = 𝑈))
4239, 41anbi12d 746 . . . . 5 (𝑥 = 𝐴 → (((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4342rexbidv 3050 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4437, 43anbi12d 746 . . 3 (𝑥 = 𝐴 → ((((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ↔ (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))))
4544rspccva 3299 . 2 ((∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4631, 45sylan 488 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  ran crn 5080  cfv 5850  crio 6565  (class class class)co 6605  GrpOpcgr 27183  GIdcgi 27184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fo 5856  df-fv 5858  df-riota 6566  df-ov 6608  df-grpo 27187  df-gid 27188
This theorem is referenced by:  grpolid  27210  grporid  27211  grporcan  27212  grpoinveu  27213  grpoinv  27219
  Copyright terms: Public domain W3C validator